

Electric actuation for industrial automation

CAMOR

6,

6,

3

0

.

Technology and innovation for your industrial applications

At Camozzi we are well aware that every application in the industrial automation sector has different and very specific requirements. In order to be able to satisfy all clients, we have expanded our technological offerings by creating C_Electrics, the department dedicated to the development of solutions for electric actuation that include electromechanical cylinders and axes with auxiliary motors and accessory components, combined in configurable systems.

The objective of Camozzi is to supply products and software tools that support the user through their decision-making and afterwards, through installation and maintenance.

For this purpose, we developed QSet, an extremely intuitive and efficient configuration software, that is able to create a program for the positioning and control of cylinders and axes based on the requirements of the application in terms of load, speed, and accelerations requested.

Movement

		Page
Series	Electromechanical cylinders ISO 15552	10
6E -	Sizes 32, 40, 50 and 63	
Series	Electromechanical axis	32
5E	Sizes 50, 65, 80	
Series	Drives for the control of electric actuation	52
DRWB	Drives for Brushless motors, sizes in power classes 100, 400 and 750 W	
Series	Drives for Stepper motors	58
DRCS	One-size full digital drives with bluetooth system and NFC integrated	
Series	Drives for the control of electric actuation	64
DRWS	Drives for Stepper motors, one size/version	
Series	Motors for electric actuation	67
МТВ	Brushless motors in power classes 100, 400 and 750 W	
Series	Motors for electric actuation	70
MTS	Stepper motors with Nema 23 or 24 fixing flange	
Series	Planetary gearboxes	73
GB	Available sizes: 40, 60 and 80	
Series	Motion transmission devices	77
CO	Mod. COE: elastomer coupling with clamps Mod. COS: elastomer coupling with expansion shaft Mod. COT: self-centering locking-set	

Camozzi: innovation, expertise and passion

Camozzi was founded in 1964, and since then we have specialized in pneumatic automation. Our product range has been constantly evolving and we now design and manufacture a comprehensive range of highly advanced components and systems. Our objective is to satisfy our customers' needs through the provision of innovative and high quality solutions, which are produced using optimized production processes and supported by excellent pre- and post-sales support services. The passion and enterprising nature of the company's founders, the Camozzi brothers, has always

guided the business, leading to sustained growth and a global presence. One of our guiding philosophies is to be close to our customers throughout the world as we believe this is fundamental in the building of successful partnerships. It is through these close customer partnerships that we provide quality components which are in accordance with local regulations and standards. Every product and solution offered is fully supported through our global infrastructure, which ensures we are proactive in providing solutions and quick to meet the needs of every customer.

Polpenazze production facility - Italy

FOCUS ON MAXIMIZING CUSTOMER BENEFITS

CONSTANT COMMITMENT TO IMPROVING PERFORMANCE

PRODUCTION PLANTS IN ITALY, USA, RUSSIA, UKRAINE, CHINA AND INDIA

BRANCHES, DISTRIBUTORS AND SUPPORT CENTRES IN MORE THAN 75 COUNTRIES

Our unique goal: total quality

Camozzi Research Centre. Present and future Quality

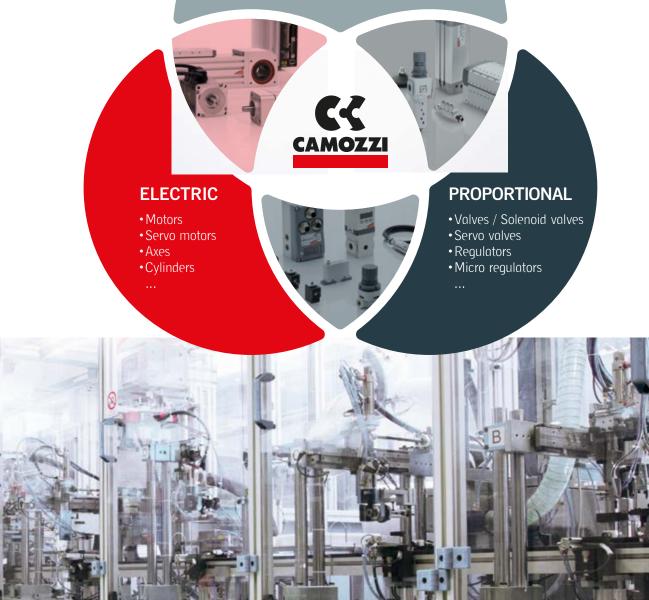
The quality of our processes and activities is guaranteed by the Camozzi Quality Department that operates in the context of Total Quality Management; in addition all our production plants are organized according to the principles of Lean Production to assure maximum efficiency. Constant Research and Development of products and technologies are at the foundation of our strategy and this target is pursued thanks to the continuous cooperation between the technical departments and the Camozzi Research Centre, an internal department completely dedicated to achieving the most innovative mechatronic technologies.

C_ELECTRICS CATALOGUE

Clean room and in-house testing area equipped to simulate the most diverse working conditions

Technologies to serve our customers

Integration


At Camozzi we believe that there is no actuation technology that is absolutely better than another technology. Our conviction is that every application has different requirements that can be satisfied in the best way possible thanks to the use of a specific technology: pneumatics, proportional or electric. It's precisely the ability to offer all technologies and to combine them in case of need, optimizing single movements and the performance requested in the context of an industrial application, that represents the competitive advantage that Camozzi is able to offer its customers.

To control speed, acceleration, the position in relation to the load to move and the distances to cover, the requested precision, optimizing costs and providing a solution that is easy to install and to manage, are all the result of the combination of technologies and skills that Camozzi offers its partners with one aim only: providing the solution with the highest added value.

PNEUMATICS

- Valves / Solenoid valves
- FRL / Pressure regulators
- Fittings
- Vacuum components

Camozzi. All you need for Automation

£Π

The ideal solution for any application

To us, complete service means offering not only standard products, but also special customized solutions, pre-assembled kits, and plug & play panels and systems, each designed and built according to the exact.

Special

Special solutions Pre-assembled kits Panels and systems

Standard

A wide range of standard components designed to be integrated in special applications

C_Electrics

- 1 Packaging
- **2** Assembly & Robotics
- **3** Material handling
- 4 Food & Beverage
- (5) Life Science (Biotechnologies)
- 6 Wood
- 7 Machine tools
- **8** Transport

Our Business Development Managers, who are in charge of single industrial sectors can support you in studying the requirements of the various applications, and can identify the best solution in terms of technologies and products.

ELECTROMECHANICAL AXES

. . .

Linear units with recirculating ball bearing guides and belt drive.

ELECTROMECHANICAL CYLINDERS

Recirculating ball screw actuators.

For Stepper and Brushless motors.

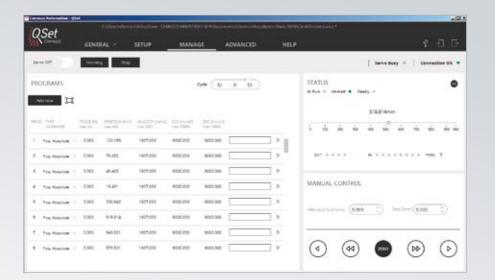
C_Electrics

Linear Motion Systems

\mathbf{S}

Compact and reliable. Available in the Stepper and Brushless versions.

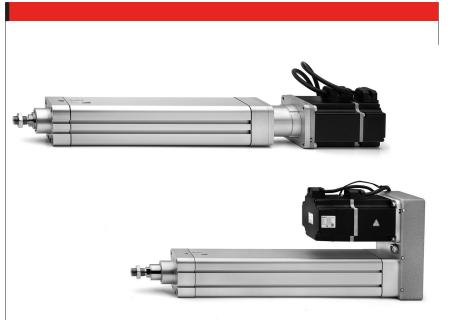
MOTORS



CONFIGURATION SOFTWARE

Camozzi has developed a software so that every user, with no specific skill in electronics, can create a program to position or control an axis or an electric cylinder. We build any configuration according to specific requirements

Once configured, it is possible to program up to 64 command lines, each of them defining an absolute, relative, or force position. All the other functions can be reached easily and promptly.



Series 6E electromechanical cylinders

Sizes 32, 40, 50 and 63

63

The Series 6E cylinders are mechanical linear actuators with rod, in which the rotary movement, generated by a motor, is converted into a linear movement by means of a recirculating ball screw. Available in 4 sizes, 32, 40, 50 and 63, the Series 6E has dimensions based on the ISO 15552 standard and it is therefore possible to use the mounting accessories of the pneumatic cylinders.

The cylinders are equipped with a magnet that makes it possible to use external magnetic proximity switches (Series CST and CSH), allowing operations like homing or extra-stroke readings to be performed. The Series 6E is equipped with specific interface kits, which make it possible to connect the motor, both in line and parallel. High precision and easy mounting make the Series 6E the ideal solution for different applications, especially for multi-position systems.

- » In compliance with the ISO 15552 standard
- » Multi-position system with transmission of the movement by means of a recirculating ball screw
- » Possibility to connect the motor in line or parallel
- » Large range of motor interfaces
- » Permanent pre-lubrication (maintenance free)
- » High positioning repeatability
- » Reduced axial backlash
- » Possibility to use magnetic sensors
- » Integrated anti-rotation system of the rod
- » IP40 / IP65
- » Wide range of fixing accessories
- » Compatible with Series 45 anti-rotation guide units

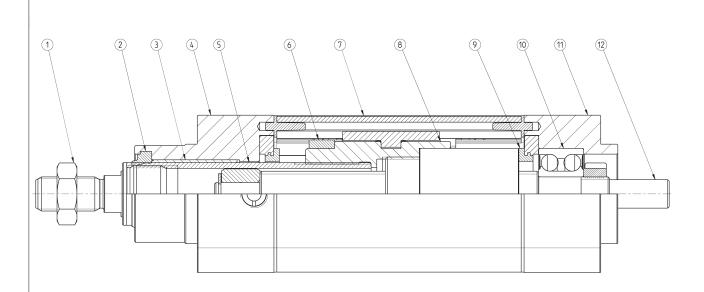
GENERAL DATA

Construction Design Operation	electromechanical cylinder with recirculating ball screw profile with thread rolling screws based on the ISO 15552 standard multi-position actuator with high precision linear movement
Sizes Strokes (min - max)	32, 40, 50, 63 100 + 1200 mm
Anti-rotation function	with anti-friction pads in technopolymer
Mounting	front / rear flange, with feet, with front / rear / swivel trunnion
Mounting motor	in line and parallel
Operating temperature Storage temperature	0°C + 50°C -20°C + 80°C
Protection class	IP40 / IP65
Lubrication	Not necessary. A pre-lubrication is performed on the cylinder.
Max. Reversing backlash Repeatability Duty cycle Max rotation play	0.02 mm ± 0.02 100% ± 0.4°
Use with external sensors	slots on three sides for sensors model CSH and CST

STANDARD STROKES

STANDARD STROKES													
Size	100	200	300	400	500	600	700	800	900	1000	1100	1200	
32	×	×	×	×	×								
40	×	×	×	×	×	×	×						
50	×	×	×	×	×	×		×		×			
63	×	×	×	×	×			×		×		×	

CODING EXAMPLE


6E	032	BS	0200	P05	Α	
6E	SERIES					
032	SIZE: 032 = 32 040 = 40 050 = 50 063 = 63					
BS	DESIGN: BS = recirculating ball screw					
0200	STROKE: 100 ÷ 1200 mm					
P05	SCREW PITCH: P05 = 5 mm P10 = 10 mm P16 = 16 mm (for size 40 only) P20 = 20 mm (for size 50 only) P25 = 25 mm (for size 63 only)					
Α	CONSTRUCTION: A = standard with rod nut					
	VERSION: = standard (IP40) () = extended piston rod P = IP65	_ mm				

MECHANICAL CHARACTERISTICS

MECHANICAL CHARACTERIS	TICS											
Size		32	32	40	40	40	50	50	50	63	63	63
BS screw diameter	[mm]	12	12	16	16	16	20	20	20	25	25	25
BS screw pitch (p)	[mm]	5	10	5	10	16	5	10	20	5	10	25
Dynamic load coefficient (C)	[N]	6600	4400	12000	8500	9150	14900	11300	7800	17700	20500	11300
Max applicable torque	[Nm]	2.50	2.80	5.50	6.50	8.20	9.10	10.90	13.60	16.60	19.90	24.90
Max linear speed *	[m/s]	0.56	1.12	0.42	0.84	1.33	0.33	0.67	1.33	0.27	0.53	1.33
Max rotational speed	[rpm]	6670	6670	5000	5000	5000	4000	4000	4000	3200	3200	3200
Max acceleration	[m/s²]	25	25	25	25	25	25	25	25	25	25	25

* it varies according to the stroke (see the graphs representing the maximum speed of the cylinder)

SERIES 6E MATERIALS

LIST OF COMPONENTS
LIST OF COMPONENTS

LIST OF COMPONENTS		
PARTS	MATERIALS	
1. Rod nut	Zinc-plated steel	
2. Rod seal	PU	
3. Bushing	Technopolymer	
4. Front endcap	Anodized aluminium	
5. Rod	Stainless steel	
6. Magnet	Plastoferrite	
7. Extrusion profile	Anodized aluminium	
8. Guiding element BS screw	Aluminium	
9. End stroke seals	NBR	
10. Bearing	Steel	
11. Rear endcap	Anodized aluminium	
12. BS ball screw	Steel	

ACCESSORIES FOR SERIES 6E CYLINDERS

Piston rod socket joint Mod. GY

Swivel ball joint Mod. GA

Piston rod lock nut Mod. U

90° male trunnion

Mod. ZC

Clevis pin Mod. S

Rear trunnion ball-joint Mod. R

Front flange Mod. D-E

Coupling piece Mod. GKF

Self aligning rod Mod. GK

Side clamping bracket Mod. BG

Foot mount Mod. B-6E

Housing for axial connection Mod. CM

Kit for parallel connection Mod. PM (IP65)

Rear female trunnion Mod. C and C-H

Flange for axial

connection Mod. FM

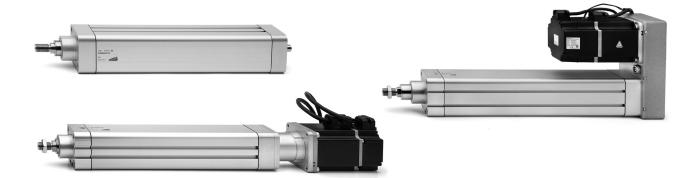
•

Rod fork end Mod. G

Kit for axial connection

Kit for parallel connection Mod. PM (IP40)

Kit for axial connection Mod. AM (IP65)



Mod. FN

Front spot faced trunnion

Counter bracket for trunnion Mod. BF

Series 45 anti-rotation guide units

All accessories are supplied separately, except for piston rod lock nut Mod. U

Mod. AM (IP40)

Swivel Combination

MOVEMENT

HOW TO CALCULATE THE LIFE OF THE CYLINDER

To perform a correct dimensioning of the Series 6E cylinder, you need to consider some facts.

Among these, the most important are:

- Dynamics of the system
- Operation and pause cyclicity
- Work environment
- General performance requirements: repeatability, accuracy, precision, etc.

CALCULATE THE LIFE IN ROTATIONS where:

 $L_{\rm r}$ = Life of the cylinder in number of rotations of the BS ball screw

C = Dynamic load coefficient of the cylinder [N]

 F_m = Average axial force applied [N]

 f_w = Safety coefficient according to the working conditions

CALCULATION OF LIFE IN km where:

$$L_{km} = \frac{L_r \cdot p}{10^6}$$

 $L_r = \left(\frac{C}{F_m \cdot f_w}\right)^3 \cdot 10^6$

 L_{km} = Life of the cyllinder in km [km] p = pitch of the BS ball screw [mm]

CALCULATION OF THE LIFE IN HOURS where:

 $L_h = \frac{L_r}{n_m \cdot 60}$

 L_h = Life of the cylinder in hours n_m = average number of revolutions of the RDS ball screw [rpm]

APPLICATION	ACCELERATION [m/s ²]	SPEED [m/s]	DUTY CYCLE	fw COEFFICIENT
light	< 5.0	< 0.5	< 35%	1.0 ÷ 1.25
normal	5.0 ÷ 15.0	0.5 ÷ 1.0	35% ÷ 65%	1.25 ÷ 1.5
heavy	> 15.0	> 1.0	> 65%	1.5 ÷ 3.0

ANALYSIS OF THE DUTY CYCLE AND OF SYSTEM PAUSES

of the paus essential to Fm axial loa average rev the cylinder Normally, th by phases a phase, we of constant sp CALCULAT AVERAGE CALCULAT NUMBER O	he duty cycle is composed and for each single can have an acceleration, beed or deceleration. FION OF THE AXIAL FORCE FION OF THE AVERAGE DF REVOLUTIONS	v			$\frac{t_{d1}) + \dots + (F_{an}^{3} \cdot n_{an} \cdot t_{an}) + (F_{vcn}}{t_{d1}) + \dots + (n_{an} \cdot t_{an}) + (n_{vcn} \cdot t_{vcn})}$ $\frac{t_{an}}{t_{an}} + (n_{vcn} \cdot t_{vcn}) + (n_{dn} \cdot t_{dn})}{t_{vcn} + t_{dn}}$	$\frac{n^3 \cdot n_{vcn} \cdot t_{vcn}}{n} + (F_{dn}^3 \cdot n_{vcn} \cdot t_{dn})$	$n_{dn} \cdot t_{dn}$
values of a	hown below reports the cceleration, speed and						
deceleration	n for each phase.						
		F	[N]	n [rpi	m] time	e %	
PHASE 1	Acceleration Constant speed Deceleration	Fa1 Fvc1 Fd1	na1 nvc1 nd1		ta1 tvc1 td1		
PHASE 2	Acceleration Constant speed	Fa2 Fvc2	nd1 na2 nvc2		ta2 tvc2		
PHASE "n -1"	Deceleration Acceleration	Fd2 Fan-1	nd2 nan-1		td2 tan-1		
PHASE "n"	Constant speed Deceleration Acceleration	Fvcn-1 Fdn-1 Fan	nvcn-1 ndn-1 nan-1		tvcn-1 tdn-1 tan-1		
PRAGE II	Constant speed Deceleration	Fvcn Fdn	nvcn-1 ndn-1		tvcn-1		
			IMIT I		tdn-1		
	TOTAL				100%		
APPLI							
	TOTAL	E		= 54 N;			
APPLIC Phase 1	TOTAL	E	$F_{vc1} = 98 N;$ F_{d1} $n_{vc1} = 1260 rpm;$ n_{d1}				
	TOTAL	$F_{a1} = 142 N;$ $n_{a1} = 630 rpm;$	$F_{vc1} = 98 N; F_{d1}$ $n_{vc1} = 1260 rpm; n_{d1}$ $t_{vc1} = 12,9 \%; t_{d1}$ $F_{vc2} = 589 N; F_{d2}$ $n_{vc2} = 900 rpm; n_{d2}$	= 630 rpm;			
Phase 1	TOTAL	$F_{a1} = 142 N;$ $n_{a1} = 630 rpm;$ $t_{a1} = 0,7 \%;$ $F_{a2} = 616 N;$ $n_{a2} = 450 rpm;$	$F_{vc1} = 98 N; F_{d1}$ $n_{vc1} = 1260 rpm; n_{d1}$ $t_{vc1} = 12,9 \%; f_{d1}$ $F_{vc2} = 589 N; F_{d2}$ $n_{vc2} = 900 rpm; n_{d2}$ $t_{vc2} = 33,3 \%; f_{d2}$ $F_{vc3} = 981 N; F_{d3}$ $n_{vc3} = 480 rpm; n_{d3}$	= 630 rpm; = 0,7 %; = 562 N; = 450 rpm;			
Phase 1 Phase 2 Phase 3	TOTAL	$F_{a1} = 142 N;$ $n_{a1} = 630 rpm;$ $t_{a1} = 0,7 \%;$ $F_{a2} = 616 N;$ $n_{a2} = 450 rpm;$ $t_{a2} = 4,8 \%;$ $F_{a3} = 997 N;$ $n_{a3} = 240 rpm;$ $t_{a3} = 7,1 \%;$ $K_{1} = (F_{a1}^{3} \cdot n_{a1} \cdot t_{a1})$ $K_{2} = (F_{a2}^{3} \cdot n_{a2} \cdot t_{a2})$	$F_{vc1} = 98 N; F_{d1}$ $n_{vc1} = 1260 rpm; n_{d1}$ $t_{vc1} = 12,9 \%; f_{d1}$ $F_{vc2} = 589 N; F_{d2}$ $n_{vc2} = 900 rpm; n_{d2}$ $t_{vc2} = 33,3 \%; f_{d2}$ $F_{vc3} = 981 N; F_{d3}$ $n_{vc3} = 480 rpm; n_{d3}$	= 630 rpm; = 0,7 %; = 562 N; = 450 rpm; = 4,8 %; = 965 N; = 240 rpm; = 7,1 %; n _{d1} · t _{d1}) n _{d2} · t _{d2})		t_{d3}) $T_2 = t_{a2} + t_{vc2}$	$_{2} + t_{d2}$
Phase 1 Phase 2 Phase 3 in this way	TOTAL	$\begin{split} F_{a1} &= 142 \ N; \\ n_{a1} &= 630 \ rpm; \\ t_{a1} &= 0,7 \ 9_{6}; \\ F_{a2} &= 616 \ N; \\ n_{a2} &= 450 \ rpm; \\ t_{a2} &= 4,8 \ 9_{6}; \\ F_{a3} &= 997 \ N; \\ n_{a3} &= 240 \ rpm; \\ t_{a3} &= 7,1 \ 9_{6}; \\ K_{1} &= (F_{a3}^{3} \cdot n_{a1} \cdot t_{a1}) \\ K_{2} &= (F_{a3}^{3} \cdot n_{a2} \cdot t_{a2}) \\ K_{3} &= (F_{a3}^{3} \cdot n_{a3} \cdot t_{a3}) \\ F_{m} &= \sqrt[3]{\frac{(K_{1} + K_{2} + K_{3})}{(R_{1} + R_{2} + R_{3})}} \end{split}$	$\begin{aligned} F_{vc1} &= 98 N; & F_{d1} \\ n_{vc1} &= 1260 rpm; & n_{d1} \\ t_{vc1} &= 12,9 \%; & t_{d1} \\ F_{vc2} &= 589 N; & F_{d2} \\ n_{vc2} &= 900 rpm; & n_{d2} \\ t_{vc2} &= 33,3 \%; & t_{d2} \\ F_{vc3} &= 981 N; & F_{d3} \\ n_{vc3} &= 480 rpm; & n_{d3} \\ t_{vc3} &= 28,6 \%; & t_{d3} \\ + \left(F_{vc1}^3 \cdot n_{vc1} \cdot t_{vc1}\right) + \left(F_{d1}^3 \cdot t_{vc3} - 28,6 \%; t_{c3}\right) \\ + \left(F_{vc3}^3 \cdot n_{vc3} \cdot t_{vc3}\right) + \left(F_{d3}^3 \cdot t_{vc3} - 18,0 \right) \\ + \left(F_{vc3}^3 \cdot n_{vc3} \cdot t_{vc3}\right) + \left(F_{d3}^3 \cdot t_{vc3} - 18,0 \right) \\ + \left(F_{vc3}^3 - n_{vc3} \cdot t_{vc3}\right) + \left(F_{d3}^3 \cdot t_{c3} - 18,0 \right) \\ + \left(F_{vc3}^3 - n_{vc3} \cdot t_{vc3}\right) + \left(F_{d3}^3 - 18,0 \right) \\ + \left(F_{vc3}^3 - 18,$	= 630 rpm; = 0,7 %; = 562 N; = 450 rpm; = 4,8 %; = 965 N; = 240 rpm; = 7,1 %; n _{d1} · t _{d1}) n _{d2} · t _{d2})	100% $n_1 = (n_{a1} \cdot t_{a1}) + (n_{vc1} \cdot t_{vc1}) + (n_{d1} \cdot t_{a2})$ $n_2 = (n_{a2} \cdot t_{a2}) + (n_{vc2} \cdot t_{vc2}) + (n_{d3} \cdot t_{a2})$	t_{d3}) $T_2 = t_{a2} + t_{vc2}$	$_{2} + t_{d2}$
Phase 1 Phase 2 Phase 3 in this way	TOTAL CATION EXAMPLE it is possible to determine:	$F_{a1} = 142 N;$ $n_{a1} = 630 rpm;$ $t_{a1} = 0,7 \%;$ $F_{a2} = 616 N;$ $n_{a2} = 450 rpm;$ $t_{a2} = 4,8 \%;$ $F_{a3} = 997 N;$ $n_{a3} = 240 rpm;$ $t_{a3} = 7,1 \%;$ $K_{1} = (F_{a1}^{3} \cdot n_{a1} \cdot t_{a1})$ $K_{2} = (F_{a2}^{3} \cdot n_{a2} \cdot t_{a2})$ $K_{3} = (F_{a3}^{3} \cdot n_{a3} \cdot t_{a3})$	$\begin{aligned} F_{vc1} &= 98 N; & F_{d1} \\ n_{vc1} &= 1260 rpm; & n_{d1} \\ t_{vc1} &= 12,9 \%; & t_{d1} \\ F_{vc2} &= 589 N; & F_{d2} \\ n_{vc2} &= 900 rpm; & n_{d2} \\ t_{vc2} &= 33,3 \%; & t_{d2} \\ F_{vc3} &= 981 N; & F_{d3} \\ n_{vc3} &= 480 rpm; & n_{d3} \\ t_{vc3} &= 28,6 \%; & t_{d3} \\ + \left(F_{vc1}^3 \cdot n_{vc1} \cdot t_{vc1}\right) + \left(F_{d1}^3 \cdot t_{vc3} - 28,6 \%; t_{c3}\right) \\ + \left(F_{vc3}^3 \cdot n_{vc3} \cdot t_{vc3}\right) + \left(F_{d3}^3 \cdot t_{vc3} - 18,0 \right) \\ + \left(F_{vc3}^3 \cdot n_{vc3} \cdot t_{vc3}\right) + \left(F_{d3}^3 \cdot t_{vc3} - 18,0 \right) \\ + \left(F_{vc3}^3 - n_{vc3} \cdot t_{vc3}\right) + \left(F_{d3}^3 \cdot t_{c3} - 18,0 \right) \\ + \left(F_{vc3}^3 - n_{vc3} \cdot t_{vc3}\right) + \left(F_{d3}^3 - 18,0 \right) \\ + \left(F_{vc3}^3 - 18,$	= 630 rpm; = 0,7 %; = 562 N; = 450 rpm; = 4,8 %; = 965 N; = 240 rpm; = 7,1 %; n _{d1} · t _{d1}) n _{d2} · t _{d2})	100% $n_1 = (n_{a1} \cdot t_{a1}) + (n_{vc1} \cdot t_{vc1}) + (n_{d1} \cdot t_{a2})$ $n_2 = (n_{a2} \cdot t_{a2}) + (n_{vc2} \cdot t_{vc2}) + (n_{d3} \cdot t_{a2})$	t_{d3}) $T_2 = t_{a2} + t_{vc2}$	$_{2} + t_{d2}$
Phase 1 Phase 2 Phase 3 in this way	TOTAL CATION EXAMPLE it is possible to determine:	$F_{a1} = 142 N;$ $n_{a1} = 630 rpm;$ $t_{a1} = 0,7 \%;$ $F_{a2} = 616 N;$ $n_{a2} = 450 rpm;$ $t_{a2} = 4,8 \%;$ $F_{a3} = 997 N;$ $n_{a3} = 240 rpm;$ $t_{a3} = 7,1 \%;$ $K_{1} = (F_{a1}^{3} \cdot n_{a1} \cdot t_{a1})$ $K_{2} = (F_{a2}^{3} \cdot n_{a2} \cdot t_{a2})$ $K_{3} = (F_{a3}^{3} \cdot n_{a3} \cdot t_{a3})$ $F_{m} = \sqrt[3]{\frac{(K_{1} + K_{2} + K_{3})}{\sqrt{(n_{1} + n_{2} + n_{3})}}}$	$F_{vc1} = 98 N; F_{d1}$ $n_{vc1} = 1260 rpm; n_{d1}$ $t_{vc1} = 12,9 \%; t_{d1}$ $F_{vc2} = 589 N; F_{d2}$ $n_{vc2} = 900 rpm; n_{d2}$ $t_{vc2} = 33,3 \%; t_{d2}$ $F_{vc3} = 981 N; F_{d3}$ $n_{vc3} = 480 rpm; n_{d3}$ $t_{vc3} = 28,6 \%; t_{d3}$ $+ (F_{vc3}^3 \cdot n_{vc1} \cdot t_{vc1}) + (F_{d1}^3 \cdot \frac{1}{(F_{vc2}^3 \cdot n_{vc3} \cdot t_{vc2})} + (F_{d3}^3 \cdot \frac{1}{(F_{vc3}^3 \cdot n_{vc3} \cdot t_{vc3})} + (F_{d3}^3 \cdot \frac{1}{(F_{vc3}^3 \cdot n_{vc3} \cdot t_{vc3})} + (F_{d3}^3 \cdot \frac{1}{(F_{vc3}^3 - n_{vc3} \cdot t_{vc3})} + (F_{d3}^3 \cdot \frac{1}{(F_{vc3}^3 - n_{vc3} \cdot t_{vc3})} + (F_{d3}^3 - \frac{1}{(F_{d3}^3 - n_{vc3} \cdot t_{vc3})} + (F_{d3}^3 - \frac{1}{(F_$	$= 630 rpm; = 0,7 \%;$ $= 562 N; = 450 rpm; = 4,8 \%;$ $= 965 N; = 240 rpm; = 7,1 \%;$ $n_{d1} \cdot t_{d1} \cdot n_{d2} \cdot t_{d2} \cdot n_{d3} \cdot t_{d3}$	$ \frac{100\%}{n_1 = (n_{a1} \cdot t_{a1}) + (n_{vc1} \cdot t_{vc1}) + (n_{d1} \cdot t_{a2}) + (n_{a2} \cdot t_{a2}) + (n_{vc2} \cdot t_{vc2}) + (n_{d3} \cdot t_{a3}) + (n_{vc3} \cdot t_{vc3}) + (n_$	t_{d3}) $T_2 = t_{a2} + t_{vc2}$	$_{2} + t_{d2}$
Phase 1 Phase 2 Phase 3 in this way Concluding	TOTAL CATION EXAMPLE it is possible to determine: , we know that: Acceleration	$F_{a1} = 142 N;$ $n_{a1} = 630 rpm;$ $t_{a1} = 0,7 \%;$ $F_{a2} = 616 N;$ $n_{a2} = 450 rpm;$ $t_{a2} = 4,8 \%;$ $F_{a3} = 997 N;$ $n_{a3} = 240 rpm;$ $t_{a3} = 7,1 \%;$ $K_{1} = (F_{a3}^{3} \cdot n_{a3} \cdot t_{a1})$ $K_{2} = (F_{a3}^{3} \cdot n_{a3} \cdot t_{a3})$ $K_{3} = (F_{a3}^{3} \cdot n_{a3} \cdot t_{a3})$ $F_{m} = \sqrt[3]{\frac{(K_{1} + K_{2} + K_{3})}{(n_{1} + n_{2} + n_{3})}}$ $n_{m} = \frac{n_{1} + n_{2} + n_{3}}{T_{1} + T_{2} + T_{3}} = \frac{142}{142}$	$F_{vc1} = 98 N; F_{d1}$ $n_{vc1} = 1260 rpm; n_{d1}$ $t_{vc1} = 12,9 \%; f_{d1}$ $F_{vc2} = 589 N; F_{d2}$ $n_{vc2} = 900 rpm; n_{d2}$ $t_{vc2} = 33,3 \%; f_{d2}$ $F_{vc3} = 981 N; F_{d3}$ $n_{vc3} = 480 rpm; n_{d3}$ $t_{vc3} = 28,6 \%; t_{d3}$ $+ (F_{vc3}^{2} \cdot n_{vc1} \cdot t_{vc1}) + (F_{d1}^{3} \cdot t_{c3}) + (F_{d2}^{3} \cdot t_{c3})$ $+ (F_{vc3}^{3} \cdot n_{vc3} \cdot t_{vc3}) + (F_{d3}^{3} \cdot t_{c3})$ $= 596,64 N$ $= 685,7 rpm$		$ \frac{100\%}{n_1 = (n_{a1} \cdot t_{a1}) + (n_{vc1} \cdot t_{vc1}) + (n_{d1} \cdot t_{a2}) + (n_{a2} \cdot t_{a2}) + (n_{vc2} \cdot t_{vc2}) + (n_{d3} \cdot t_{a3}) + (n_{vc3} \cdot t_{vc3}) + (n_{vc3} \cdot t_{vc3})$	t_{d3}) $T_2 = t_{a2} + t_{vc2}$	$t_{2} + t_{d2}$
Phase 1 Phase 2 Phase 3 in this way i Concluding	TOTAL CATION EXAMPLE it is possible to determine: , we know that:	$F_{a1} = 142 N;$ $n_{a1} = 630 rpm;$ $t_{a1} = 0,7 \%;$ $F_{a2} = 616 N;$ $n_{a2} = 450 rpm;$ $t_{a2} = 4,8 \%;$ $F_{a3} = 997 N;$ $n_{a3} = 240 rpm;$ $t_{a3} = 7,1 \%;$ $K_{1} = (F_{a1}^{3} \cdot n_{a1} \cdot t_{a1})$ $K_{2} = (F_{a2}^{3} \cdot n_{a2} \cdot t_{a2})$ $K_{3} = (F_{a3}^{3} \cdot n_{a3} \cdot t_{a3})$ $F_{m} = \sqrt[3]{\frac{(K_{1} + K_{2} + K_{3})}{T_{1} + T_{2} + T_{3}}} =$ $n_{m} = \frac{n_{1} + n_{2} + n_{3}}{T_{1} + T_{2} + T_{3}} =$ $F [N]$	$F_{vc1} = 98 N; F_{d1}$ $n_{vc1} = 1260 rpm; n_{d1}$ $t_{vc1} = 12,9 \%; t_{d1}$ $F_{vc2} = 589 N; F_{d2}$ $n_{vc2} = 900 rpm; n_{d2}$ $t_{vc2} = 33,3 \%; t_{d2}$ $F_{vc3} = 981 N; F_{d3}$ $n_{vc3} = 480 rpm; n_{d3}$ $t_{vc3} = 28,6 \%; t_{d3}$ $+ (F_{vc1}^3 \cdot n_{vc1} \cdot t_{vc1}) + (F_{d1}^3 \cdot F_{d2}^3 \cdot F_{vc3} \cdot t_{vc2}) + (F_{d2}^3 \cdot F_{vc3} \cdot t_{vc3}) + (F_{d3}^3 \cdot t_{vc3} \cdot t_{vc3}) + (F_{d$		$\begin{array}{c} 100\% \\ \\ n_1 = (n_{a1} \cdot t_{a1}) + (n_{vc1} \cdot t_{vc1}) + (n_{d1} \cdot t_{d2}) \\ n_2 = (n_{a2} \cdot t_{a2}) + (n_{vc2} \cdot t_{vc2}) + (n_{d3} \cdot t_{d3}) \\ n_3 = (n_{a3} \cdot t_{a3}) + (n_{vc3} \cdot t_{vc3}) + (n_{d3} \cdot t_{d3}) \\ \end{array}$	t_{d3}) $T_2 = t_{a2} + t_{vc2}$	$t_{2} + t_{d2}$

240 480 240

7.1 28.6 7.1

100.0

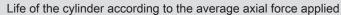
TOTAL

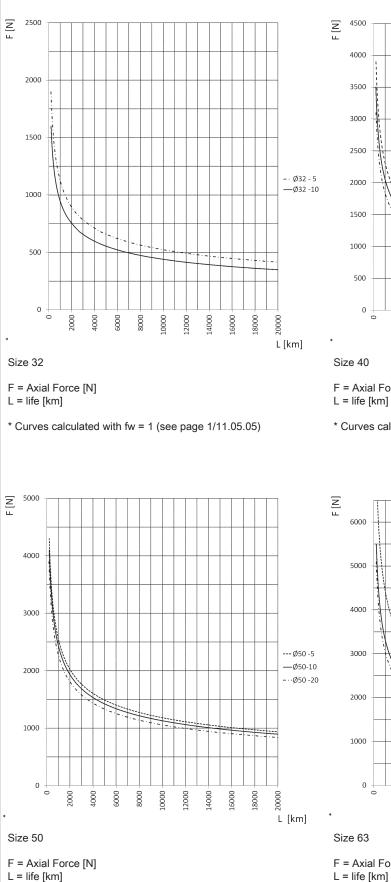
Acceleration Constant speed Deceleration

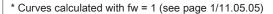
PHASE 3

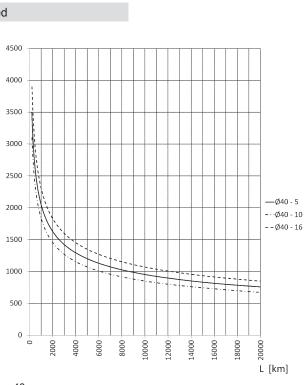
Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com.

997 981 965

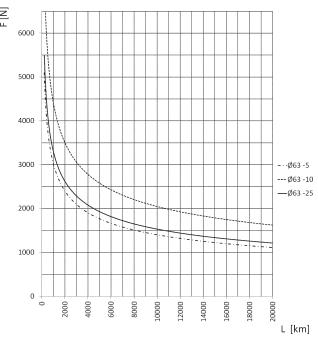

MOVEMENT


MECHANICAL DIMENSIONING

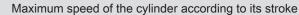

CALCULATION OF THE DRIVING TORQUE AT CONSTANT SPEED [Nm]	$C_{m1} = \frac{F_a \cdot p}{2\pi \cdot \eta \cdot 1000}$
TOTAL FORCE ACTING ON THE SYSTEM [N] where: F = Force to be applied in axial direction [N] m = Mass of the body to move [kg] g = Gravitational acceleration (9.81 m/s ²) p = Pitch of the ball screw [mm] η = Output of the Series 6E cylinders = 0.9 μ = Friction coefficient of the support guide	$F_a = F + \mu \cdot m \cdot g$
CALCULATION OF THE DRIVING TORQUE AT CONSTANT ACCELERATION [Nm]	$Cm_2 = Cm_1 + J_{tot} \cdot \frac{\dot{\omega}}{\eta}$
ANGULAR ACCELERATION [rad/s ²] where: a = Linear acceleration of the ball screw [m/s ²] p = Pitch of the screw [mm]	$\dot{\omega} = \frac{a \cdot 2\pi \cdot 1000}{p}$
MOMENT OF TOTAL INERTIA OF THE CYLINDER [kg·m²]	$J_{tot} = J_{frb} + J_{vrb}$
MOMENT OF TOTAL INERTIA OF THE 6E COMPONENTS AT FIXED LENGTH [kg·m ²] where:	$J_{frb} = (J_{c1} \cdot 10^{-6}) + m_{c1} \cdot \left(\frac{p}{2\pi \cdot 1000}\right)^2$
J_{c1} = Moment of inertia of 6E rotating components [kg·m ²] m _{c1} = Mass of the 6E components to move [kg]	
MOMENT OF TOTAL INERTIA OF THE 6E COMPONENTS AT VARIABLE LENGTH [kg·m²] where:	$J_{vrb} = \left[(J_{c2} \cdot 10^{-6}) + m_{c2} \cdot \left(\frac{p}{2\pi \cdot 1000}\right)^2 \right] \cdot \frac{c}{1000}$
J_{c2} = Moment of inertia of the 6E rotating components [kg·m ²] m _{c2} = Mass of the 6E components to move [kg] c = rod stroke [mm]	


Size	Pitch	m _{c1}	m _{c2}	J _{c1}	J _{c2}
32	5	0.151 Kg	0.0008 Kg	12.38 kg mm ²	1.59 kg mm ²
	10	0.151 Kg	0.0008 Kg	12.38 kg mm ²	1.59 kg mm ²
40	5	0.428 Kg	0.0010 Kg	35.55 kg mm ²	5.02 kg mm ²
	10	0.428 Kg	0.0010 Kg	35.55 kg mm ²	5.02 kg mm ²
	16	0.428 Kg	0.0010 Kg	35.55 kg mm ²	5.02 kg mm ²
50	5	0.399 Kg	0.0011 Kg	54.96 kg mm ²	12.33 kg mm ²
	10	0.399 Kg	0.0011 Kg	85.94 kg mm ²	12.33 kg mm ²
	20	0.399 Kg	0.0011 Kg	83.25 kg mm ²	12.33 kg mm ²
63	5	0.576 Kg	0.0014 Kg	207.53 kg mm ²	30.07 kg mm ²
	10	0.576 Kg	0.0014 Kg	230.82 kg mm ²	30.07 kg mm ²
	25	0.576 Kg	0.0014 Kg	219.55 kg mm ²	30.07 kg mm ²

MOVEMENT

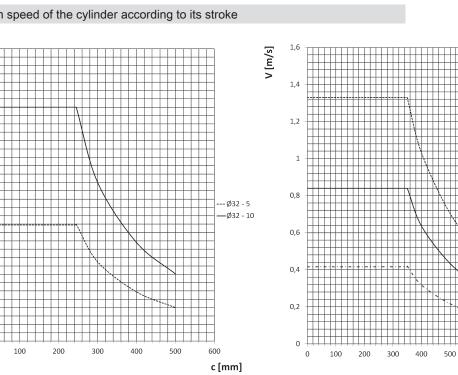


F = Axial Force [N]


* Curves calculated with fw = 1 (see page 1/11.05.05)

F = Axial Force [N]

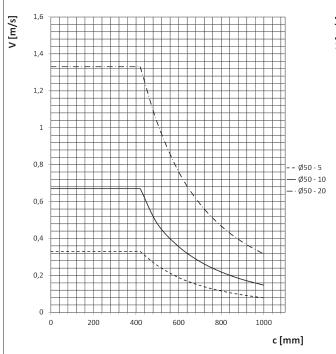
L = life [km]

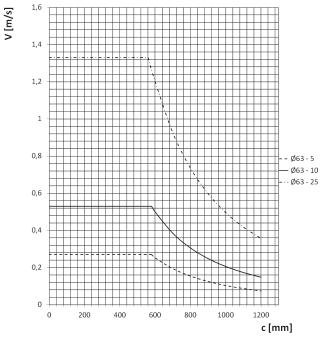

* Curves calculated with fw = 1 (see page 1/11.05.05)

- · Ø40 - 5

— Ø40- 10

--- Ø40- 16

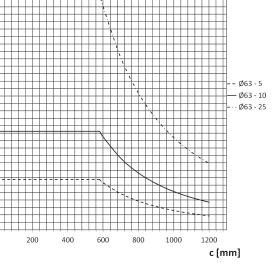

Size 40


V = speed [m/s]

c = stroke [mm]

Size 32

V = speed [m/s] c = stroke [mm]



Size 63

V = speed [m/s] c = stroke [mm]

600

700

800

c [mm]

C<

CAMOZZI

1

V [m/s]

1,4

1.2

1

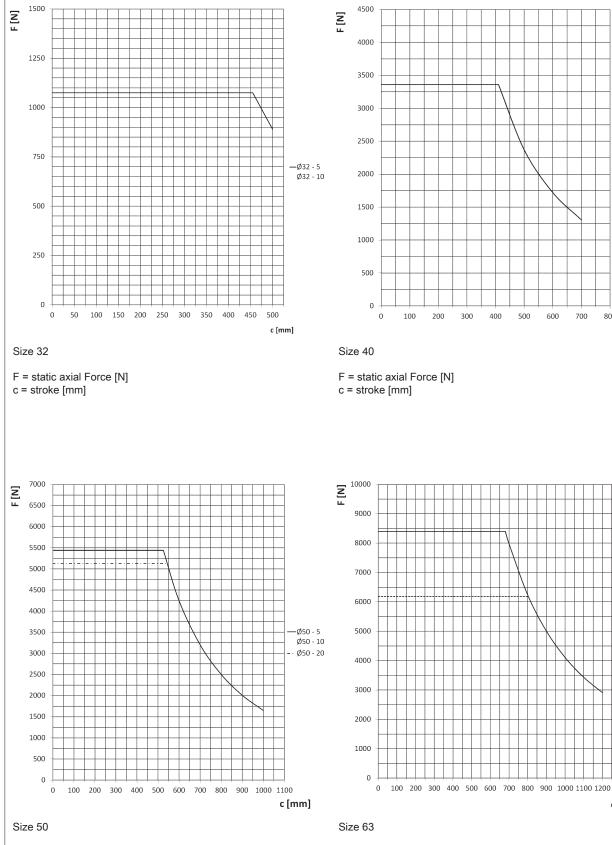
0,8

0,6

0,4

0,2

0


0

Maximum force of the cylinder according to its stroke

1 MOVEMENT

-Ø40 - 5

Ø40 - 10 Ø40 - 16

F = static axial Force [N]

c = stroke [mm]

F = static axial Force [N]

c = stroke [mm]

100

200

300

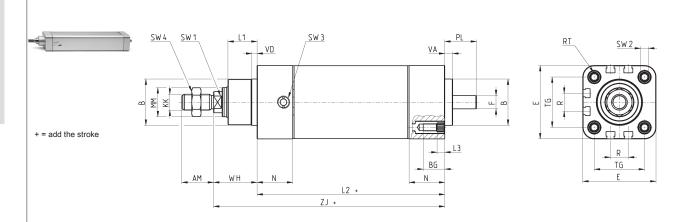
400

500

600

700

800


c [mm]

-Ø63 - 5

Ø63-10

Ø63 - 25

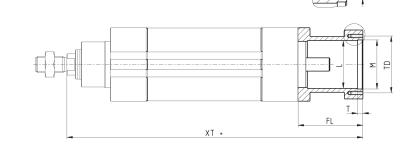
c [mm]

Size	AM	В	BG	Е	F	KK	L1	L2+	L3	MM	Ν	R	RT	PL	SW1	SW2	SW3	SW4	TG	VA	VD	WH	ZJ+	weight stroke zero [g]	weight stroke [g/100mm]
32	22	30	16	46.5	8	M10x1.25	20	125	5.5	18	26	13	M6	21	10	6	G1/8	17	32.5	6	4	30	155	1175	377
40	24	35	16	55.4	10	M12x1.25	22	142	5.5	22	27	13.5	M6	24	13	6	G1/8	19	38	6	4	33	175	1395	530
50	32	40	16	64.9	12	M16x1.5	26	173	5.5	25	36	16	M8	30	17	8	G1/8	24	46.5	7	4	38	211	2280	603
63	32	45	16	75	15	M16x1.5	29	201	5.5	30	36	28	M8	38	17	8	G1/8	24	56.5	7	4	42	242.5	3500	977

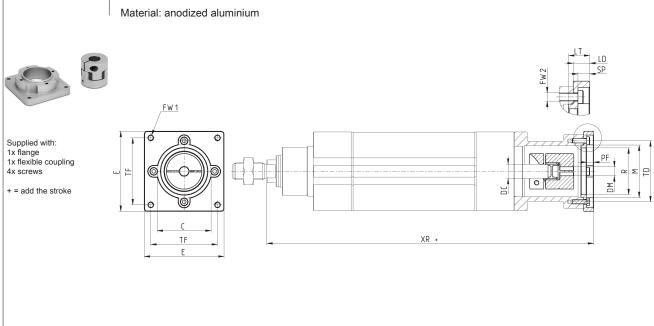
Housing for axial connection Mod. CM

Material: anodized aluminium

ΤG


D

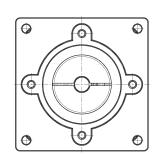
ΤG

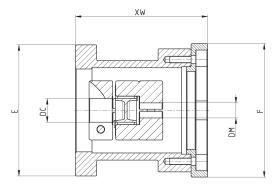


Supplied with: 1x housing 4x screws

+ = add the stroke

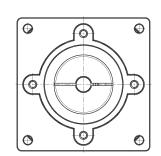
Size	XT	E	øD	TG	FL	_ø L	_ø M [H7]	Т	TD	RT	I.	Weight (g)
32	201	46.5	42	32.5	46	29	32	4	37	M3	9	100
40	224	55.4	52	38	49	36	37	4	43	M3	9	150
50	267	64.9	58	46.5	56	39	42	4	49	M4	9	225
63	306.5	75	60.5	56.5	64	48	47	4	54	M4	9	280
	32 40 50	32 201 40 224 50 267	32 201 46.5 40 224 55.4 50 267 64.9	32 201 46.5 42 40 224 55.4 52 50 267 64.9 58	32 201 46.5 42 32.5 40 224 55.4 52 38 50 267 64.9 58 46.5	32 201 46.5 42 32.5 46 40 224 55.4 52 38 49 50 267 64.9 58 46.5 56	32 201 46.5 42 32.5 46 29 40 224 55.4 52 38 49 36 50 267 64.9 58 46.5 56 39	32 201 46.5 42 32.5 46 29 32 40 224 55.4 52 38 49 36 37 50 267 64.9 58 46.5 56 39 42	32 201 46.5 42 32.5 46 29 32 4 40 224 55.4 52 38 49 36 37 4 50 267 64.9 58 46.5 56 39 42 4	32 201 46.5 42 32.5 46 29 32 4 37 40 224 55.4 52 38 49 36 37 4 43 50 267 64.9 58 46.5 56 39 42 4 49	32 201 46.5 42 32.5 46 29 32 4 37 M3 40 224 55.4 52 38 49 36 37 4 43 M3 50 267 64.9 58 46.5 56 39 42 4 49 M4	32 201 46.5 42 32.5 46 29 32 4 37 M3 9 40 224 55.4 52 38 49 36 37 4 43 M3 9 50 267 64.9 58 46.5 56 39 42 4 49 M4 9

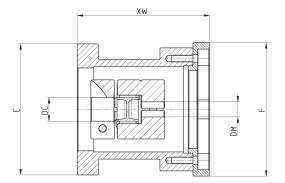

Flange for axial connection Mod. FM


Mod.	Size	Housing	Motor	XR	_ø C [h7]	PF	LT	LD	_ø M [H7]	Е	øR	TF	FW1	_ø TD	SP	_ø FW2	_ø DC	_ø DM	Weight (g)
FM-6E-32-0100	32	CM-6E-32	MTB-010	210	30	6	11	9	32	42	29	31.8	M3	37	6	3.5	8	8	65
FM-6E-32-0023	32	CM-6E-32	MTS-23	208	38.1	5	9	7	32	56.4	29	47.1	M4	37	5	3.5	8	6.35	140
FM-6E-40-0400	40	CM-6E-40	MTB-040	242	50	3.5	20	18	37	60	33	49.5	M5	43	3.5	3.5	10	14	140
FM-6E-40-0023	40	CM-6E-40	MTS-23	231	38.1	5	9	7	37	56.4	33	47.1	M4	43	5	3.5	10	6.35	215
FM-6E-50-0400	50	CM-6E-50	MTB-040	284	50	6	19	17	42	60	37	49.5	M5	49	14	4.5	12	14	210
FM-6E-50-0024	50	CM-6E-50	MTS-24	274	38.1	3	9	7	42	58	37	47.1	M4	49	4	4.5	12	8	190
FM-6E-63-0750	63	CM-6E-63	MTB-075	332.5	70	6	28	26	47	80	43	63.6	M6	54	24	4.5	15	19	565
FM-6E-63-0024	63	CM-6E-63	MTS-24	313.5	38.1	5	9	7	47	60.5	43	47.1	M4	54	5	4.5	15	8	200

Kit for axial connection Mod. AM (Protection class IP40)

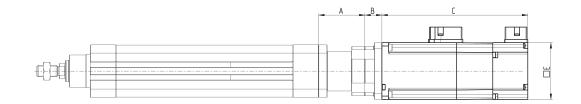
Supplied with: 1x housing 1x flange 1x flexible coupling 4x screws to connect on the cylinder's side 4x screws to connect on the motor's side


Mod.	Size	Motor	_ø DC	_ø DM	E	F	XW	Weight (g)	η
AM-6E-32-0100	32	MTB-010	8	8	46.5	42	55	165	0.78
AM-6E-32-0023	32	MTS-23	8	6.35	46.5	56.4	53	240	0.78
AM-6E-40-0400	40	MTB-040	10	14	55.4	60	67	290	0.78
AM-6E-40-0023	40	MTS-23	10	6.35	55.4	56.4	56	365	0.78
AM-6E-50-0400	50	MTB-040	12	14	64.9	60	73	435	0.78
AM-6E-50-0024	50	MTS-24	12	6.35	64.9	58	63	415	0.78
AM-6E-63-0750	63	MTB-075	15	19	75	80	90	845	0.78
AM-6E-63-0024	63	MTS-24	15	6.35	75	60.5	71	480	0.78


Kit for axial connection Mod. AM (Protection class IP65)

MOVEMENT

1


Supplied with: 1x housing 1x flange 1x flexible coupling 4x screws to connect on the cylinder's side 4x screws to connect on the motor's side 3x seals 4x seal washers

Mod.	Size	Motor	_ø DC	_ø DM	E	F	XW	Weight (g)	η
AM-6E-32-0100P	32	MTB-010	8	8	46.5	42	55	165	0.78
AM-6E-32-0023P	32	MTS-23	8	6.35	46.5	56.4	53	240	0.78
AM-6E-40-0400P	40	MTB-040	10	14	55.4	60	67	290	0.78
AM-6E-40-0023P	40	MTS-23	10	6.35	55.4	56.4	56	365	0.78
AM-6E-50-0400P	50	MTB-040	12	14	64.9	60	73	435	0.78
AM-6E-50-0024P	50	MTS-24	12	6.35	64.9	58	63	415	0.78
AM-6E-63-0750P	63	MTB-075	15	19	75	80	90	845	0.78
AM-6E-63-0024P	63	MTS-24	15	6.35	75	60.5	71	480	0.78

Series 6E cylinders - in line motor configuration

Size	Motor	А	В	C (with brake)	C (with encoder)	C (without brake)	E
32	MTS-23	46	7	105.5	64.5	41	56.4
32	MTB-010	46	9	139	-	110.5	42
40	MTS-23	49	7	105.5	64.5	41	56.4
40	MTB-040	49	18	154.5	-	121.5	60
50	MTS-24	56	7	152	111	85	60.5
50	MTB-040	56	17	154.5	-	121.5	60
63	MTS-24	64	7	152	111	85	60.5
63	MTB-075	64	26	176	-	140	80

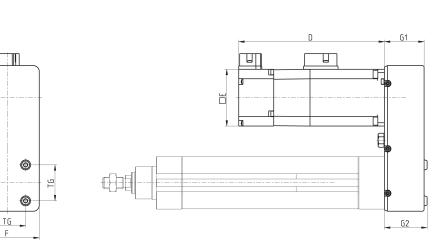
Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com.

•

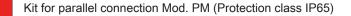
MOVEMENT

٢

۲

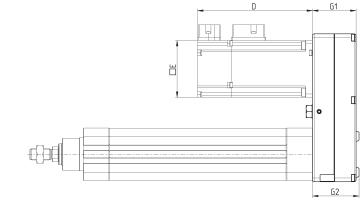

F

ക


1

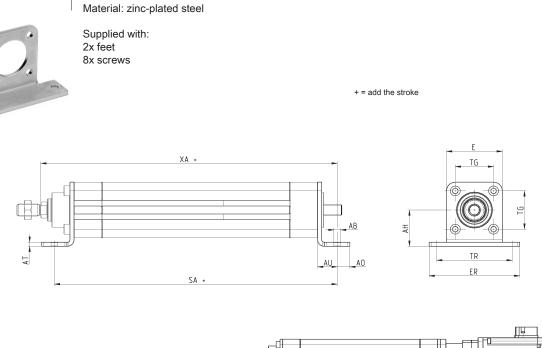
The kit includes: 1x flange to connect the motor to the cylinder 1x cover 2x pulleys 2x locking sets 1x toothed belt 1x belt traction unit 4x fixing screws 4x screws for cylinder's side 4x screws rear cover 6x cover fixing screws

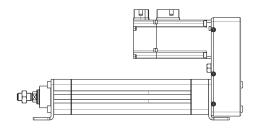
Mod.	Size	Motor	Е	D (with brake)	D (without brake)	А	F	G1	G2	В	С	TG	Weight (g)	η
PM-6E-32-0100	32	MTB-010	42	139	110.5	122	50	35	38.2	26.5	65	32.5	400	0.62
PM-6E-40-0400	40	MTB-040	60	154.5	121.5	154	67	46	49.2	30	90	38	900	0.62
PM-6E-50-0400	50	MTB-040	60	154.5	121.5	174	77	48	52.4	34.5	105.5	46.5	1250	0.62
PM-6E-63-0750	63	MTB-075	80	176	140	192	87	50	54.4	41	107	56.5	1500	0.62

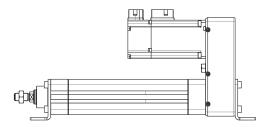


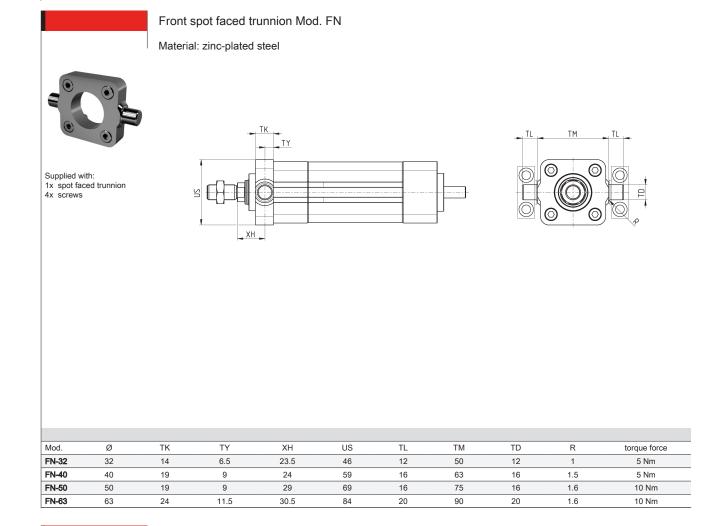
The kit includes: 1x front cover 1x rear cover 2x pulleys 2x locking sets 1x toothed belt 1x belt traction unit 4x screws for cylinder's side 4x cover rear screws + seal washers 6x cover fixing screws 3x seals 1x seal plug 4x motor seal washers

ഷ


1

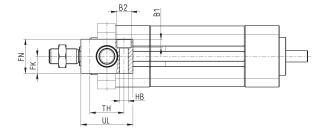

Mod.	Size	Motor	Е	D (with brake)	D (without brake)	А	F	G1	G2	В	С	TG	Weight (g)	η
PM-6E-32-0100P	32	MTB-010	42	139	110.5	122	54	35	39.2	26.5	65	32.5	450	0.62
PM-6E-40-0400P	40	MTB-040	60	154.5	121.5	154	67	46	50.2	30	90	38	960	0.62
PM-6E-50-0400P	50	MTB-040	60	154.5	121.5	174	77	48	53.4	34.5	105.5	46.5	1375	0.62
PM-6E-63-0750P	63	MTB-075	80	176	140	192	87	50	55.4	41	107	56.5	1675	0.62

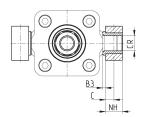

Foot bracket Mod. B-6E



Mod.	Size	SA	XA	AH	TG	TR	AT	AU	AO	øAB	ER	Е	Weight (g)
B-6E-32	32	164	174.5	32	32.5	65	4	19.5	12.5	6.6	79	46.5	275
B-6E-40	40	181	194.5	36	38	75	4	19.5	12.5	6.6	90	55.4	340
B-6E-50	50	223	236	45	46.5	90	5	25	15	9	110	64.9	635
B-6E-63	63	251	267.5	50	56.5	100	5	25	15	9	120	75	755

MOVEMENT

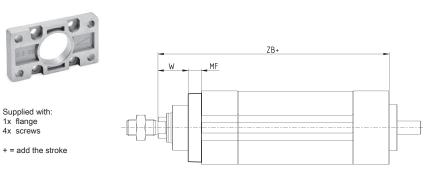


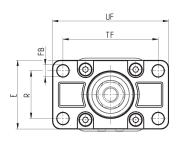


Counter bracket for front trunnion Mod. BF

Material: aluminium

Supplied with: 2x supports




Mod.	Ø	CR	NH	С	B3	TH	UL	FK	FN	B1	B2	HB
BF-32	32	12	15	7.5	3	32	46	15	30	6.8	11	6.6
BF-40-50	40 - 50	16	18	9	3	36	55	18	36	9	15	9
BF-63-80	63 - 80	20	20	10	3	42	65	20	40	11	18	11

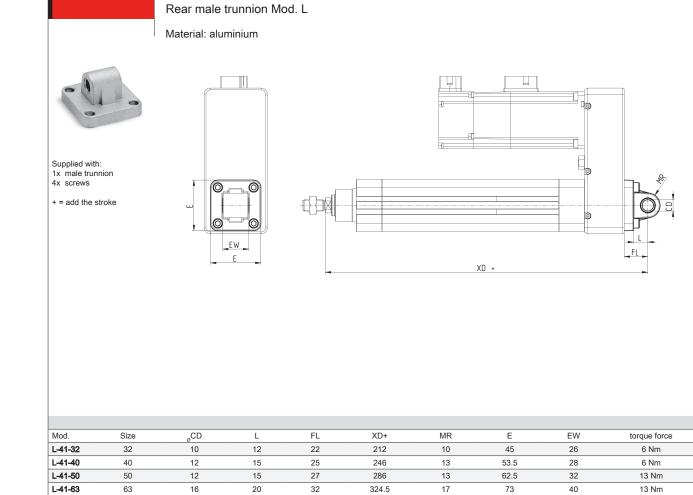
Front flange Mod. D-E

Material: aluminium

1 MOVEMENT

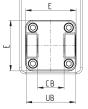
Mod.	Size	W	MF	ZB+	TF	R	UF	Е	FB	torque force
D-E-41-32	32	20	10	155	64	32	86	45	7	6 Nm
D-E-41-40	40	23	10	175	72	36	88	52	9	6 Nm
D-E-41-50	50	26.5	12	211	90	43	110	63	9	13 Nm
D-E-41-63	63	30	12	242.5	100	50	116	73	9	13 Nm

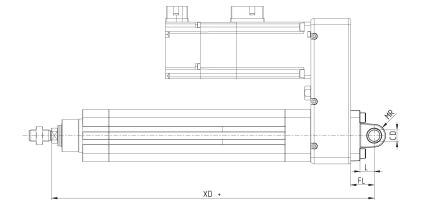
Side clamping bracket Mod. BG


Material: aluminium

Supplied with: 2x clamps

D2 Η A T Ξ D1 A2 A1 C 1 C 1 0 ۲ \bigcirc Ξ ----- m 0 \bigcirc \bigcirc P E2

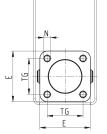

Mod.	Size	C1	E1	E2	Р	A1	A2	В	Screw	_ø D1	_ø D2	H1	H2	Weight (g)
BG-6E-32	32	35	71	70	10	40	50	58.5	M4x	4.5	7.5	13.5	4.5	80
BG-6E-40	40	35	82	70	10	40	50	67.5	M5x	5.5	9	16.9	5.5	105
BG-6E-50	50	35	93	70	10	40	50	76.5	M6x	6.5	10.5	19.4	6.5	125
BG-6E-63	63	35	103.5	70	10	40	50	87	M6x	6.5	10.5	18.9	6.5	125

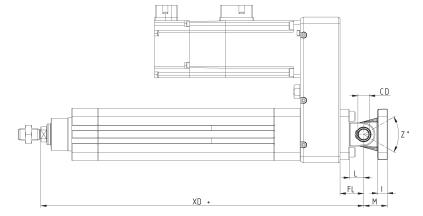

Rear female trunnion Mod. C and C-H

Supplied with: 1x female trunnion 4x screws

+ = add the stroke

Material: aluminium

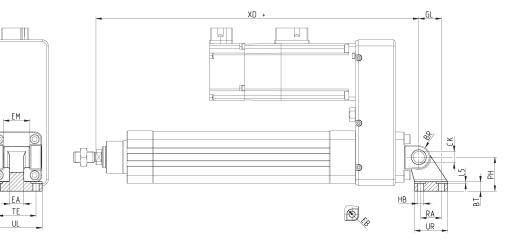

Mod.	Size	_ø CD	L	FL	XD+	MR	E	CB	UB	torque force
C-41-32	32	10	12	22	212	10	45	26	45	6 Nm
C-41-40	40	12	15	25	246	12	53.5	28	52	6 Nm
C-41-50	50	12	15	27	286	13	62.5	32	60	13 Nm
C-H-41-63	63	16	20	32	324.5	17	73	40	70	13 Nm


Accessory combination Mod. C+L+S

Material: aluminium

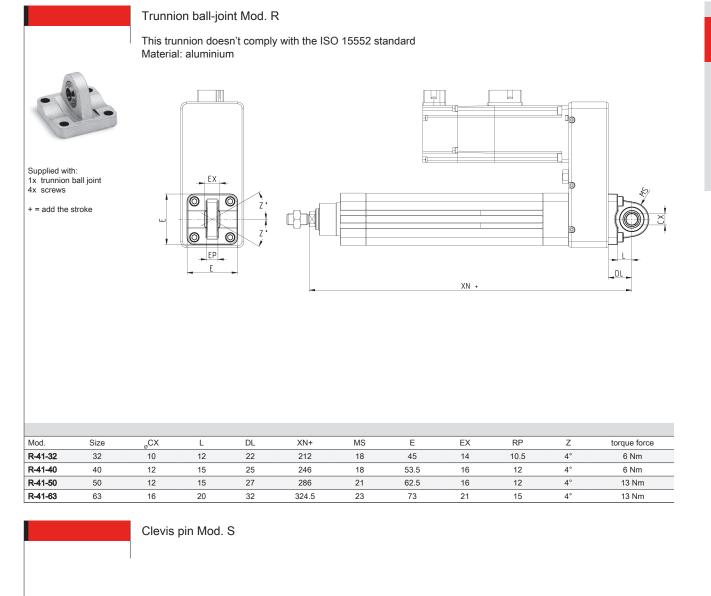
+ = add the stroke

Mod.	Size	E	TG	øN	XD+	_ø CD	L	FL	I	М	Z° (max)	torque force
C+L+S	32	45	32.5	6.5	142	10	12	22	10	22	30	6 Nm
C+L+S	40	53.5	38	6.5	160	12	15	25	10	25	40	6 Nm
C+L+S	50	62.5	46.5	9	170	12	15	27	12	27	25	13 Nm
C+L+S	63	73	56.5	9	190	16	20	32	12	32	36	13 Nm

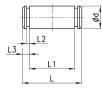


Supplied with: 1x male support

+ = add the stroke


90° male trunnion Mod. ZC

CETOP RP 107P Material: aluminium

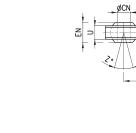

Mod.	Size	_ø EB	_ø CK	_ø НВ	XD+	TE	UL	EA	GL	L5	RA	EM	UR	PH	BT	BR
ZC-32	32	11	10	6.6	212	38	51	10	21	1.6	18	26	31	32	8	10
ZC-40	40	11	12	6.6	246	41	54	15	24	1.6	22	28	35	36	10	11
ZC-50	50	15	12	9	286	50	65	16	33	1.6	30	32	45	45	12	13
ZC-63	63	15	16	9	324.5	52	67	16	37	1.6	35	40	50	50	14	15

MOVEMENT

Supplied with: 1x clevis pin in stainless steel 303 2x Seeger in steel

Mod.	Size	d	L	L1	L2	L3
S-32	32	10	52	46	1.1	3
S-40	40	12	59	53	1.1	3
S-50	50	12	67	61	1.1	3
S-63	63	16	77	71	1.1	3

дŢ


¥

CE

1

Swivel ball joint Mod. GA
ISO 8139. Material: zinc-plated steel

Mod.	_ø CN	U	EN	ER	AX	CE	KK	Т	Ζ	SW
GA-32	10	10,5	14	14	20	43	M10X1,25	15	6,5	17
GA-40	12	12	16	16	22	50	M12X1,25	17,5	6,5	19
GA-50-63	16	15	21	21	28	64	M16X1,5	22	7,5	22
GA-80-100	20	18	25	25	33	77	M20x1,5	27,5	7	30
GA-41-125	30	25	37	37	51	110	M27x2	40	7,5	41

Pis
Mat

Piston rod socket joint Mod. GY

Material: zama and zinc-plated steel

L1 L2 L3 SW SW1 _gB

19 17

21 6.5 17

11

_øC _øD _øT Z

14 28 19 15

19 22 40 27 22 11

19 32 22 17.5 15

15

SW Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

Size

32

40

KK

AX CE E

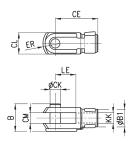
M12X1.25 20 40 12 84

GY-50-63 50-63 M16X1.5 27 50 16 112 27.5 8 23 22

Mod.

GY-32

GY-40


Rod fork end Mod. G

L

M10X1.25 18 35 10 74 19.5 6.5 15 17

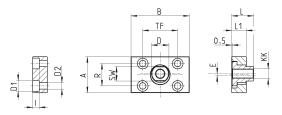
ISO 8140 Material: zinc-plated steel

Mod.	_ø CK	LE	CM	CL	ER	CE	KK	В	B1
G-25-32	10	20	10	20	12	40	M10 X 1.25	26	18
G-40	12	24	12	24	14	48	M12 X 1.25	32	20
G-50-63	16	32	16	32	19	64	M16 X 1.5	40	26

Piston rod lock nut Mod. U

ISO 4035 Material: zinc-plated steel

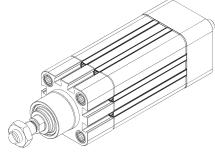
Mod.	D	m	SW
U-25-32	M10X1,25	6	17
U-40	M12X1,25	7	19
U-50-63	M16X1,5	8	24


MOVEMENT

		Self a	ligning	rod Mo	od. GK	ζ.											
		Materi	al: zinc-p	lated s	teel												
		,						I -			Z Z		L3 L4 B1 SW1	L L1		XX C	
Mod.	Size	KK	L	L1	L3	L4	_ø Α	D	Н	1	SW	SW1	SW2	B1	AX	Z	E
GK-25-32	32	M10x1.25	71.5	35	20	7.5	14	22	32	30	19	12	17	5	22	4	2
GK-40	40	M12x1.25	75.5	35	24	7.5	14	22	32	30	19	12	19	6	22	4	2
GK-50-63	50-63	M16x1.5	104	53	32	10	22	32	45	41	27	20	24	8	30	3	2

Coupling piece Mod. GKF

Material: zinc-plated steel



Mod.	Size	KK	А	В	R	TF	L	L1	I	D	_ø D1	_ø D2	SW	E
GKF-25-32	32	M10x1.25	37	60	23	36	22.5	15	6.8	18	11	6.6	15	2
GKF-40	40	M12x1.25	56	60	38	42	22.5	15	9	20	15	9	15	2.5
GKF-50-63	50-63	M16x1.5	80	80	58	58	26.5	15	10.5	25	18	11	22	2.5

Mod. S-CST-500 Slot cover profile Mod. S-CST-500

Supplied with 500 mm tube

Series 5E electromechanical axis

New models

Series 5E axes are mechanical linear actuators in which the rotary movement generated by a motor is converted into a linear movement by means of a toothed belt.

The Series 5E, available in 3 sizes, 50, 65 and 80, is realized by means of a special self-supporting square profile, in which the components have been completely integrated, assuring compactness and light weight. The presence of a recirculating ball guide grants high stiffness and resistance to external loads. To protect the internal elements from potential contaminants from the external environment, the profile has been closed with a stainless steel plate. The axis is equipped with a magnet that makes it possible to use external proximity switches (Series CSH), allowing operations like homing or extra-stroke readings to be performed. Moreover, these actuators also have accessories in order to be used with inductive sensors. The Series 5E is equipped with specific interface kits making it possibleto connect the motor on 4 sides. The use with high dynamics and the possibility to realize multi-axis systems, make the Series 5E particularly suitable for the packaging and assembly sectors.

- Multiposition system with transmission of the movement with toothed belt
- » Suitable for high dynamics
- » Possibility to connect the motor on 4 sides
- » Large range of motor interfaces
- Possibility to use magnetic proximity switches and/ or inductive sensors
- » IP 40
- » Max stroke 6 meters
- » Plates to realize multiaxis systems
- » Presence of internal channels for re-lubrication
- » Large range of axis mounting accessories

Versions available:

- » Standard slider
- » Long slider
- » Double slider

GENERAL DATA

Construction	electromechanical axis with toothed belt
Design	open profile with protection plate
Operation	multi-position actuator
Sizes	50, 65, 80
Strokes	50 ÷ 4000 mm for size 50; 50 ÷ 6000 mm for sizes 65 and 80
Type of guide	internal, with recirculating balls (cage type)
Fixing	by means of slots on the profile and special clamps
Mounting motor	on all 4 sides
Operating temperature	-10°C + +50°C
Storage temperature	-20°C + +80°C
Protection class	IP 40
Lubrication	centralized lubrification by means of internal channels
Repeatability	± 0.05 mm
Duty cycle	100%
Use with external sensors	Series CSH magnetic switches in special slots or inductives by means of supports

CODING EXAMPLE

1

5E	S 050	TBL	0200	A	S	2(500)	
5E	SERIES						
S	PROFILE: S = square section						
050	FRAME SIZE: 050 = 50x50 mm 065 = 65x65 mm 080 = 80x80 mm						
TBL	TRANSMISSION: TBL = toothed belt						
0200	STROKE [C]: 0050 + 4000 mm for size 050 0050 + 6000 mm for sizes 065 and 080						
Α	VERSION: A = standard						
S	TYPE OF SLIDER: S = standard L = long						
2(500)	NUMBER OF SLIDERS: 1 = 1 slider 2() = 2 sliders at () mm step [only for sliders type "S"]						

MECHANICAL CHARACTERISTICS

^(A) Value refers to a covered distance of 2000 Km with fully supported system.

(B) The "suggested" speed is not the mechanical limit of the unit but represents the best compromise between high load applied and high dynamics. In case of particular requirements, please contact our technical assistance (service@camozzi.com).

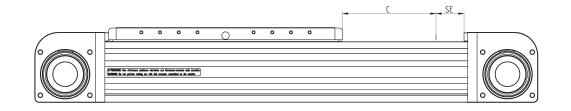
^(C) Value refers to 1500 rpm.

	Measuring unit	Size 50	Size 50	Size 65	Size 65	Size 80	Size 80
RECIRCULATING BALL GUIDE (CAGE TYPE)							
Type of slider		S	L	S	L	S	L
Number of RDS blocks	pcs	2	3	2	3	2	3
Dynamic load of RDS blocks (C)	N	11640	17460	28400	42600	44600	66900
Max admissible load (C _{max} z) (C _{max} y)	N	3100 ^(A)	5100 ^(A)	8300 ^(A)	12450 ^(A)	13100 ^(A)	19600 ^(A)
Max admissible moment (M _{mex} x)	Nm	22.44	31.23	96.00	144.00	216.60	324.9
Max admissible moment (M _{max} y) (M _{max} z)	Nm	45.30	96.76	269.40	612.64	525.00	1193.17
Max linear speed of mechanics (V _{max})	m/s	5	2.5 ^(B)	5	2.5 ^(B)	5	2.5 ^(B)
Max linear acceleration of mechanics (amax)	m/s²	50	20 ^(B)	50	20 ^(B)	50	20 ^(B)
PROFILE							
Mass in movement	kg	0.45	0.62	1.10	1.51	2.30	3.11
Mass in movement per stroke meter	kg/m	0.13	0.13	0.21	0.21	0.41	0.41
Moment of surface inertia I,	mm ⁴	1.89 • 10 ⁵	1.89 • 10 ⁵	4.94 • 10 ⁵	4.94 • 10 ⁵	1.23 • 10 ⁶	1.23 • 10 ⁶
Moment of surface inertia I _z	mm ⁴	2.48 • 10 ⁵	2.48 • 10 ⁵	6.97 • 10 ⁵	6.97 • 10 ⁵	1.68 • 10 ⁶	1.68 • 10 ⁶
TOOTHED BELT							
Гуре		20 AT 5 HP	20 AT 5 HP	32 AT 5 HP	32 AT 5 HP	32 AT 10 HP	32 AT 10 HF
Pitch	mm	5	5	5	5	10	10
Vax tensile strength	N	1795	1795	2890	2890	6570	6570
Safe tensile strength	N	1110	1110	1786	1786	4061	4061
Max load at break	N	7180	7180	11570	11570	26295	26295
Max transmittable load ^(C) (C _{max} x)	N	480 ^(C)	480 ^(C)	1150 ^(C)	1150 ^(C)	1400 ^(C)	1400 ^(C)
PULLEY							
Primitive pulley diameter	mm	31.83	31.83	47.75	47.75	63.66	63.66
Number of teeth	z	20	20	30	30	20	20
Linear movement per pulley round	mm/round	100	100	150	150	200	200

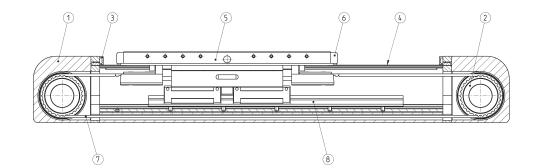
of the used motion transmission devices.

MOVEMENT

SERIES 5E STROKE


LEGEND:

C = Stroke


```
SE = Standard extra-stroke [ 5ES050.. = 30mm ]
                               [5ES065.. = 30mm]
[5ES080.. = 30mm]
```

NOTES:

- Should an additional extra-stroke be required, it must be foreseen by the client.
 The slider should never work in stop on the header.

SERIES 5E MATERIALS

COMPONENTS	MATERIALS	
1. End cap	Aluminium	
2. Pulley	Steel	
3. End cap bumper	Technopolymer	
4. Protection plate	Steel	
5. Slider	Aluminium	
6. Bumper	Technopolymer	
7. Toothed belt	PU + Steel	
8. Recirculating ball guide	Steel	

MOVEMENT

How to calculate the life of the axis 5E

The correct dimensioning of the axis 5E, used individually or in a cartesian system with several axes, you need to consider some facts, both static and dynamic. Among these, the most important are described on the following pages.

CALCULATION OF LIFE [km]

- $\begin{array}{l} L_{eq} = \text{Life of the axis 5E [km]} \\ C_{ma} = \text{Maximum admissible load [N]} \\ C_{eq} = \text{Equivalent load [N]} \\ f_w = \text{safety coefficient according to} \end{array}$ the working conditions

CALCULATION OF EQUIVALENT LOAD

When compression/traction and side loads as well as bending or torque moments act on the system, you need to calculate the equivalent load acting on the system.

C_{eq} = Equivalent load [N] F_y = Force acting along the Y-axis [N] F_z = Force acting along the Z-axis [N] C_{ma} = Max admissible load [N] M_x = Moment along X-axis [Nm] M_y = Moment along Y-axis [Nm] M_z = Moment along Z-axis [Nm] $M_{(x,ma)}^{-}$ = Max admissible moment along X-axis [Nm] M_(y,ma) = Max admissible moment along Y-axis [Nm] M_(z,ma) = Max admissible moment along Z-axis [Nm]

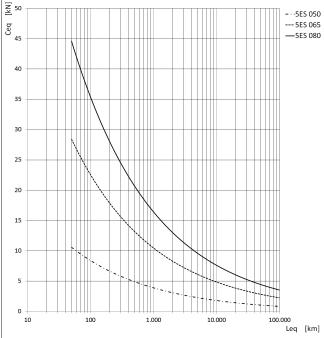
$L_{eq} = \left(\frac{C_{ma}}{C_{eq} \cdot f_w}\right)^3 \cdot 2000$

$$C_{eq} = |F_y| + |F_z| + C_{ma} \cdot \left| \frac{M_x}{M_{x,ma}} \right| + C_{ma} \cdot \left| \frac{M_y}{M_{y,ma}} \right| + C_{ma} \cdot \left| \frac{M_z}{M_{z,ma}} \right|$$

How to calculate the max deflection and verification of distance between supports

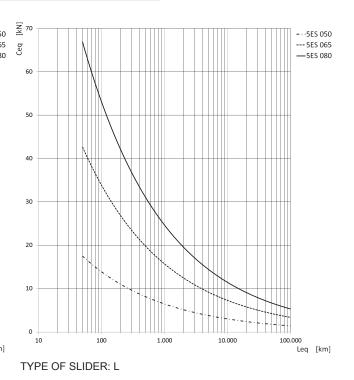
The electromechanical axis 5E is a self-supporting system and can also be used between 2 or more supports without the need of a continuous contact surface. The maximum value of the deflection generated by the deformation of the system must never exceed the following calculation:

f_{max} = Maximum admissible deflection [mm] c_{max} = Maximum stroke of axis 5E [mm]


NOTE: for a quicker choice, please see the graphs on the following pages.


 $f_{max} = c_{max} \cdot 5 \cdot 10^{-4}$

APPLICATION	ACCELERATION [m/s ²]	SPEED [m/s]	DUTY CYCLE	fw
light	< 10	< 1.5	< 35%	1 ÷ 1.25
normal	10 ÷ 25	1.5 ÷ 2.5	35% ÷ 65%	1.25 ÷ 1.5
heavy	> 25	> 2.5	> 65%	1.5 ÷ 3


LIFE OF THE SERIES 5E AXIS ACCORDING TO THE EQUIVALENT LOAD

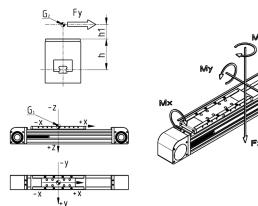
1

Curves calculated with fw = 1 (see page 1/11.15.04) Ceq = Equivalent load applied on the axis 5E [kN] Leq = Life of the axis 5E [km]

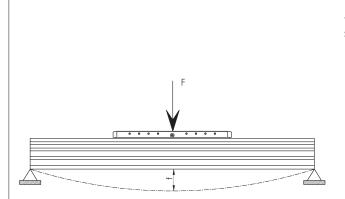
Curves calculated with fw = 1 (see page 1/11.15.04) Ceq = Equivalent load applied on the axis 5E [kN] Leq = Life of the axis 5E [km]

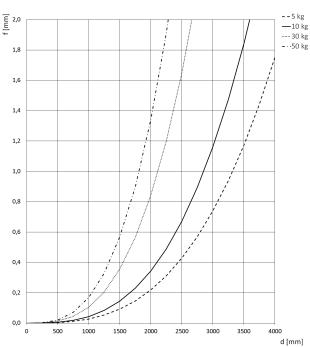
EQUIVALENT LOAD

To determine the moment acting on the axis x,Mx, in an accurate way, refer to the following formula:

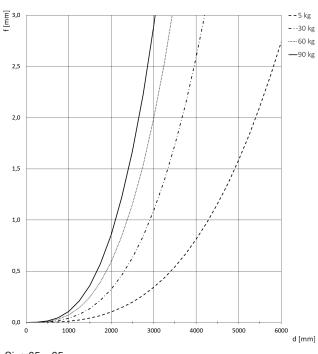

 $Mx = Fy \cdot (h+h1)$

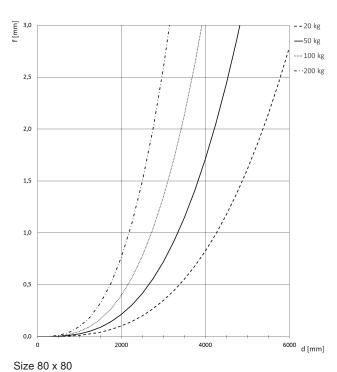
where:

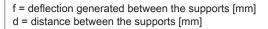

Mx = Moment along X-axis [Nm] Fy = Force acting along the Y-axis [N] h = fixed distance for axis 5E [mm] h1 = application arm [mm] G1 = origin of the system of 5E axis coordinates G2 = barycentre of application of acting forces NOTE: here below, the "h" values are reported


for the three sizes.

- h = 45.5 mm (5E050)
- h = 56 mm (5E065)
- h = 69.5 mm (5E080)







f = deflection generated between the supports [mm] d = distance between the supports [mm]

Size 65 x 65

120 00 x 00

f = deflection generated between the supports [mm] d = distance between the supports [mm]

ACCESSORIES FOR SERIES 5E

MOVEMENT

Perforated side clamping bracket Mod. BGA

Interface plate - slider on slider

Interface plate - profile

on slider

Interface plate - profile on slider - long arm

Interface plate - Series 6E cylinder on slider

Interface plate - profile side on slider, left pos.

Interf. plate - profile side on slider, right pos.

Fixed interface plate

Interface plate -Guide S. 45 / Cyl. S. 6E

Kit to fix the inductive sensor

Kit to connect the gearbox

Kit to connect the gearbox, enhanced series

Direct connection kit for Stepper motor

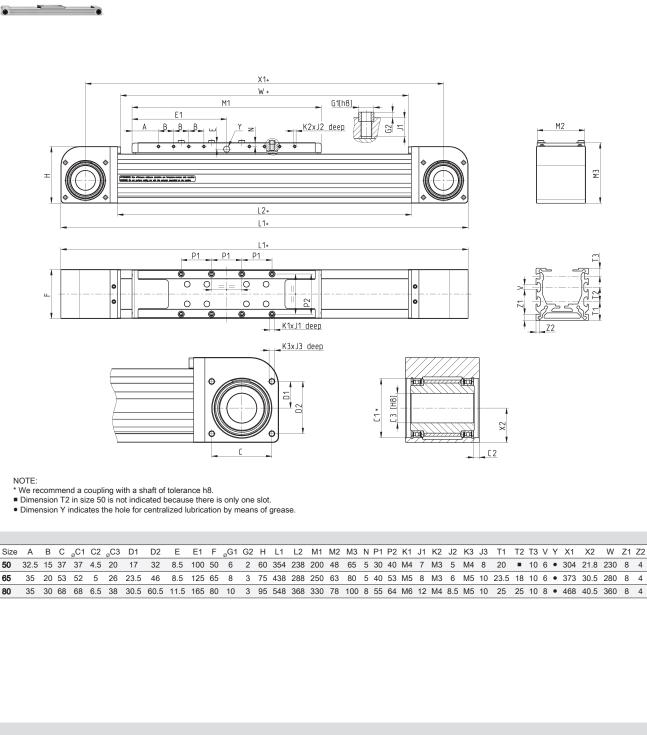
Slot nut for sensor CSH

Slot nut 6 rectangular type

Slot nut 6 for front insertion

Slot nut 8 with flexible flap

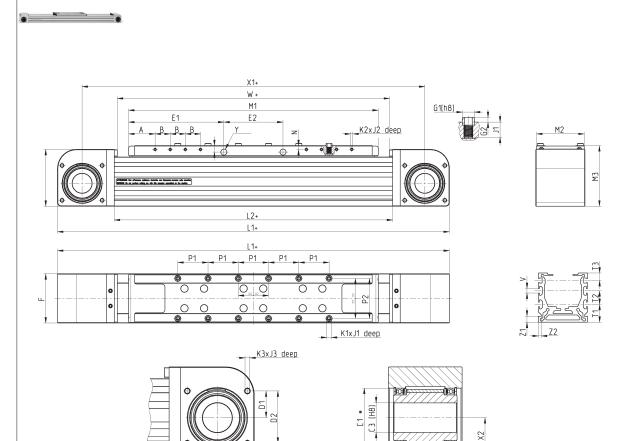
Parallel connection kit



All accessories are supplied separately from the axis.

- Together with the axis, a kit is supplied containing:
- covers to close the holes on the endcap
- centering bushings for the slider
- nipples for greasing

Electromechanical axis Mod. 5E...AS1



Size	WEIGHT STROKE ZERO [kg]	STROKE WEIGHT PER METER [kg/m]
50	2.15	3.35
65	4.6	5.4
80	8.9	5.9

4

Electromechanical axis Mod. 5E...AL1

1

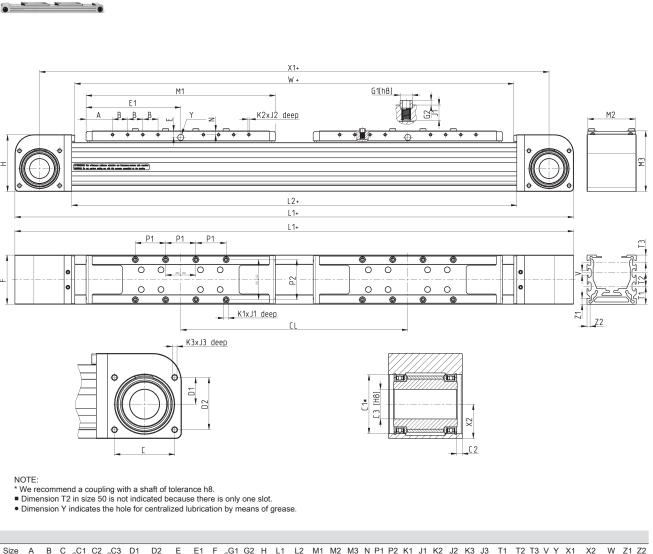
Φ

¢

NOTE: * We recommend a coupling with a shaft of tolerance h8. ■ Dimension T2 in size 50 is not indicated because there is only one slot. • Dimension Y indicates the hole for centralized lubrication by means of grease.

Size	Α	В	С	_ø C	1 C2	_ø C3	D1	D2	Е	E1	E2	F	_ø G1	G2	Н	L1	L2	M1	M2	М3	NF	21 P	2 K1	J1	K2	J2	K3	J3	T1	T2	Т3	VΥ	X1	X2	W	Z1	Z2
50	32.5	1	5 37	37	4.5	20	17	32	8.5	101.5	62	50	6	2	60	419	303	265	48	65	53	30 4	0 M4	↓ 7	М3	5	M4	8	20.0	-	10	6•	369	21.8	295	8	4
65	35.0	20	53	52	5	26	23.5	46	8.5	126.0	78	65	8	3	75	518	368	330	63	80	5 4	10 5	3 M5	58	М3	6	M5	10	23.5	18	10	6•	453	30.5	360	8	4
80	37.5	30) 68	68	6.5	38	30.5	60.58	11.5	167.5	110	80	10	3	95	663	483	445	78	100	8 5	556	4 M6	5 12	M4	8.5	M5	10	25.0	25	10	8•	583	40.5	475	8	4

X2


C 2

M

100

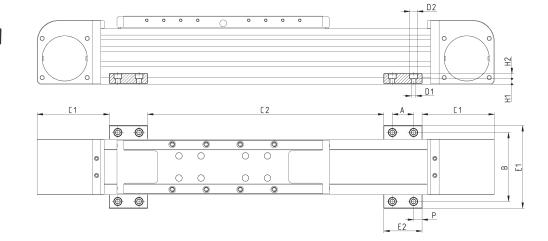
50 2.58 3.35 65 5.56 5.4 90 11.10 5.0	Size	WEIGHT STROKE ZERO [kg]	STROKE WEIGHT PER METER [kg/m]
	50	2.58	3.35
90 11 10 50	65	5.56	5.4
80 11.10 5.9	80	11.10	5.9

Electromechanical axis Mod. 5E...AS2

Size	Α	В	С	_ø C1	C2	_ø C3	D1	D2	Е	E1	F	_ø G1	G2	Н	L1	L2	M1	M2	М3	Ν	P1	P2	K1	J1	K2	J2	K3	J3	T1	T2	Т3	٧١	′ X1	X2	W	Z1	Z2
50	32.5	15	37	37	4.5	20	17	32	8.5	100	50	6	2	60	604	488	200	48	65	5	30	40	M4	7	М3	5	M4	8	20	•	10	6	554	21.8	480	8	4
65	35	20	53	52	5	26	23.5	46	8.5	125	65	8	3	75	738	588	250	63	80	5	40	53	M5	8	М3	6	M5	10	23.5	18	10	6	673	30.5	580	8	4
80	35	30	68	68	6.5	38	30.5	60.5	11.5	165	80	10	3	95	948	768	330	78	100	8	55	64	M6	12	M4	8.5	M5	10	25	25	10	8 •	868	40.5	760	8	4

Size	CL min	CL max	Max applicable stroke	WEIGHT STROKE ZERO [kg]	STROKE WEIGHT PER METER [kg/m]
50	250	2000	Smax = 4262 - CL	3.49	3.35
65	300	2000	Smax = 6212 - CL	7.35	5.4
80	400	2000	Smax = 6132 - CL	14.68	5.9

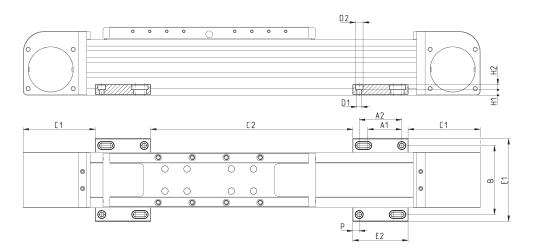
Side clamping bracket Mod. BGS


Material: Aluminium

1

Supplied with: 2x clamps

TABLE NOTE: * according to the span (max admissible deflection) recommended value 500 mm

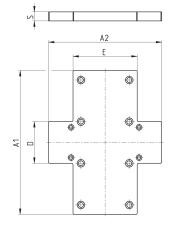

Mod.	Size	А	В	C1	C2	_ø D1	_ø D2	E1	E2	H1	H2	Р	Weight (g)
BGS-5E-M5	50	25	66	68	*	5.5	9	82	45	6.4	6	10	45
BGS-5E-M5	65	25	81	85	*	5.5	9	97	45	6.4	6	10	45
BGS-5E-M5	80	25	96	100	*	5.5	9	112	45	6.4	6	10	45
BGS-5E-M6	50	25	66	68	*	6.5	10.5	82	45	5.4	7	10	40
BGS-5E-M6	65	25	81	85	*	6.5	10.5	97	45	5.4	7	10	40
BGS-5E-M6	80	25	96	100	*	6.5	10.5	112	45	5.4	7	10	40

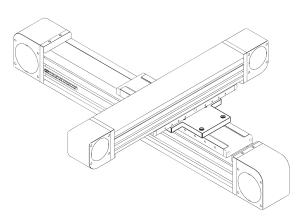
Perforated side clamping bracket Mod. BGA

Material: Aluminium

Supplied with: 2x clamps with perforation

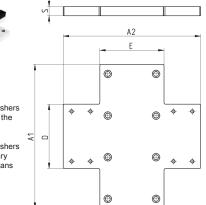
TABLE NOTE: * according to the span (max admissible deflection) recommended value 500 mm

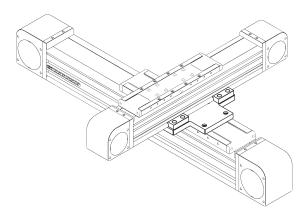



Mod.	Size	A1	A2	В	C1	C2	_ø D1	_ø D2	E1	E2	H1	H2	Р	Weight (g)
BGA-5E-M5	50	40	50	66	68	*	5.5	9	82	65	6.4	6	7.5	60
BGA-5E-M5	65	40	50	81	85	*	5.5	9	97	65	6.4	6	7.5	60
BGA-5E-M5	80	40	50	96	100	*	5.5	9	112	65	6.4	6	7.5	60
BGA-5E-M6	50	40	50	66	68	*	6.5	10.5	82	65	5.4	7	7.5	55
BGA-5E-M6	65	40	50	81	85	*	6.5	10.5	97	65	5.4	7	7.5	55
BGA-5E-M6	80	40	50	96	100	*	6.5	10.5	112	65	5.4	7	7.5	55

Interface plate - slider on slider

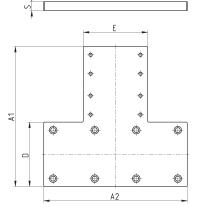
The kit includes: 1x interface plate 8x screws + 8x lock washers to connect the plate on the slider of the main axis 4x screws + 4x lock washers to connect the plate on the slider of the secondary axis

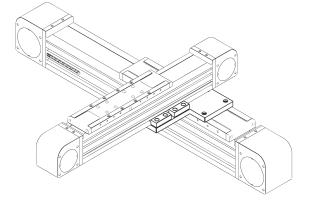



Mod.	Size	A1	A2	D	E	S	Weight (g)
XY-S65-S50	65	150	150	55	70	12	515
XY-S80-S50	80	190	150	55	85	12	690
XY-S80-S65	80	190	150	70	85	12	720

The kit includes: 1x interface plate 8x screws + 8x lock washers to connect the plate on the slider of the main axis 4x clamps 8x screws + 8x lock washers to connect the secondary axis on the plate by means of clamps

Interface plate - profile on slider

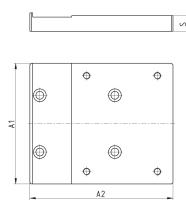


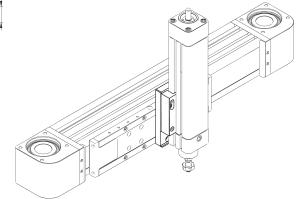

Mod.	Size	A1	A2	D	E	S	Weight (g)
XY-S65-P50	65	150	162	85	70	12	730
XY-S80-P50	80	190	182	85	85	12	945
XY-S80-P65	80	190	185	100	85	12	1000

Interface plate - profile on slider - long arm

The kit includes: 1x interface plate 8x screws + 8x lock washers to connect plate on the slider

of the main axis 4x clamps 8x screws + 8x lock washers to connect plate on the slider of the secondary axis by means of clamps

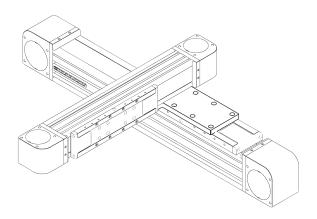



Mod.	Size	A1	A2	D	E	S	Weight (g)
XY-S50-P50-T	50	162	130	50	85	12	600
XY-S65-P50-T	65	170	150	65	85	12	750
XY-S65-P65-T	65	185	170	65	100	12	800
XY-S80-P50-T	80	185	190	85	85	12	960
XY-S80-P65-T	80	185	190	85	100	12	1010
XY-S80-P80-T	80	200	190	85	120	12	1100

Interface plate - Series 6E cylinder on slider

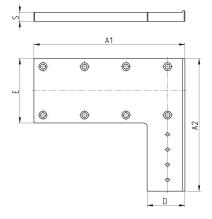
The kit includes: 1x interface plate 4x screws + 4x lock washers to connect the plate on the slider of the axis 2x clamps 4x screws + 4x lock washers to fix the Series 6E cylinder by means of clamps

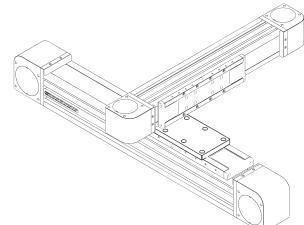



Mod.	Size	A1	A2	S	Weight (g)
XY S50-6E32	50	72	101	11	315
XY-S65-6E32	65	72	101	11	315
XY-S65-6E40	65	85	101	11	350
XY S65-6E50	65	95	110	12	510
XY-S80-6E32	80	75	101	12	385
XY-S80-6E40	80	85	101	12	410
XY-S80-6E50	80	95	110	12	510
XY S80-6E63	80	106	110	12	560

The kit includes: 1x interface plate 8x screws + 8x lock washers to connect the plate on the slider of the main axis, screws and nuts for slot to connect the plate on the slider of the secondary axis

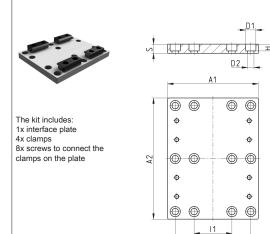
Interface plate - profile side on slider - left position

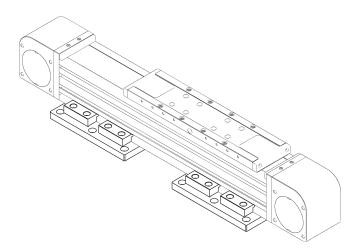



Mod.	Size	A1	A2	D	E	S	Nr of holes	Weight (g)
XY-S50-LL50	50	130	145	50	55	11	4	450
XY-S65-LL50	65	160	160	50	70	11	4	500
XY-S65-LL65	65	170	180	65	70	12	8	550
XY-S80-LL50	80	200	175	50	85	12	4	750
XY-S80-LL65	80	210	195	65	85	12	8	870
XY-S80-LL80	80	210	195	80	85	12	8	900

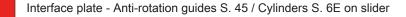
Interface plate - profile side on slider - right position

The kit includes: 1x interface plate 8x screws + 8x lock washers to connect the plate on the slider of the main axis, screws and nuts for slot to connect the plate on the slider of the secondary axis

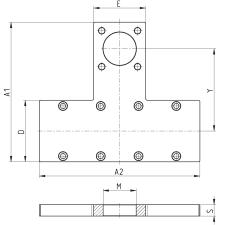


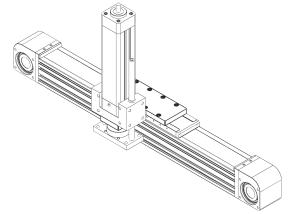


Mod.	Size	A1	A2	D	E	S	Nr of holes	Weight (g)
XY-S50-LR50	50	130	145	50	55	11	4	450
XY-S65-LR50	65	160	160	50	70	11	4	500
XY-S65-LR65	65	170	180	65	70	12	8	550
XY-S80-LR50	80	200	175	50	85	12	4	750
XY-S80-LR65	80	210	195	65	85	12	8	870
XY-S80-LR80	80	210	195	80	85	12	8	900


Fixed interface plate

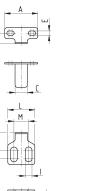
12



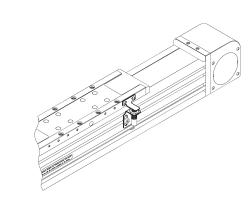


Mod.	Size	A1	A2	"D1	"D2	Н	 	12	S	Weight (g)
X-P50	50	95	140	9	5.5	6	45	80	8	275
X-P65	65	120	140	10.5	6.5	7	50	100	10	430
X-P80	80	120	160	13.5	8.5	9	50	100	12	570

The kit includes: 1x interface plate 8x screws + 8x lock washers to connect the plate on the slider 4x screws to connect the cylinder



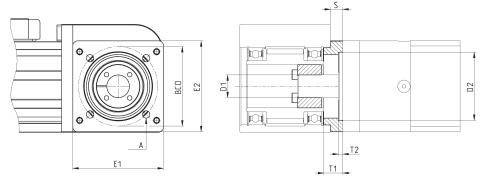
Mod.	Size	A1	A2	D	E	S	_ø M [H10]	Y	Weight (g)
XY-S50-45N32	50	124	130	50	49	12	30	75	350
XY-S65-45N32	65	139	170	65	49	12	30	82.5	480
XY-S65-45N40	65	147.5	170	65	55	12	35	87	500
XY-S65-45N50	65	157	170	65	66.5	12	40	91.5	530
XY-S80-45N40	80	167.5	190	85	55	12	35	97	660
XY-S80-45N50	80	177	190	85	65	12	40	101.5	690
XY-S80-45N63	80	190.5	190	85	75	12	45	110	740


The kit includes: 1x sensor dog 2x screws to fix the sensor dog 1x sensor supporting plate 2x screws to connect the sensor supporting plate 2x nuts for the slot

Kit to fix the inductive sensor

ΗŻ

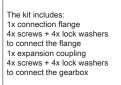
Kit to connect the gearbox

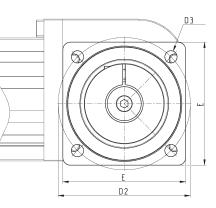

Mod.	Size	А	С	D	E	H1	H2	I	L	М	N1	N2	ο _∞ Ο	Р	Q	R	S	Weight (g)
SIS-M5-50/65	50-65	27	10	20	3.5	13	8.5	5.5	22	12	14.5	21	5.5	8	14	26	10	10
SIS-M8-65	65	27	10	20	3.5	13	8.5	5.5	25	15	10.5	24	8.5	10	18.5	30	15	10
SIS-M5-80	80	45	15	20	4.5	16	10.5	5.5	22	12	14.5	21	5.5	8	14	26	10	15
SIS-M8-80	80	45	15	20	4.5	16	10.5	5.5	25	15	10.5	24	8.5	10	18.5	30	15	15

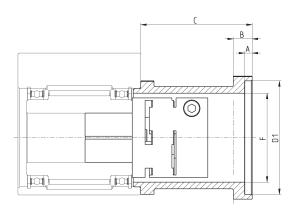
Ξ

D

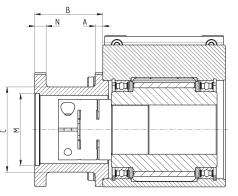
The kit includes: 1x connection flange 4x screws + 4x lock washers to connect the flange 1x locking set 4x screws + 4x lock washers to connect the gearbox

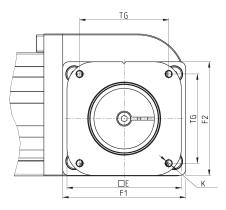



DIMENSIONS											
Mod.	Size	E1	E2	S	BCD	A	_ø D1	_ø D2 [H7]	T1	T2	Weight (g)
FR-5E-50	50	48	43	6	34	4.5	10	Ø26	10	10	85
FR-5E-65	65	63	60	7	52	5.5	14	Ø40	11	11	140
FR-5E-80	80	80	80	11	70	6.5	20	Ø60	17	4	325

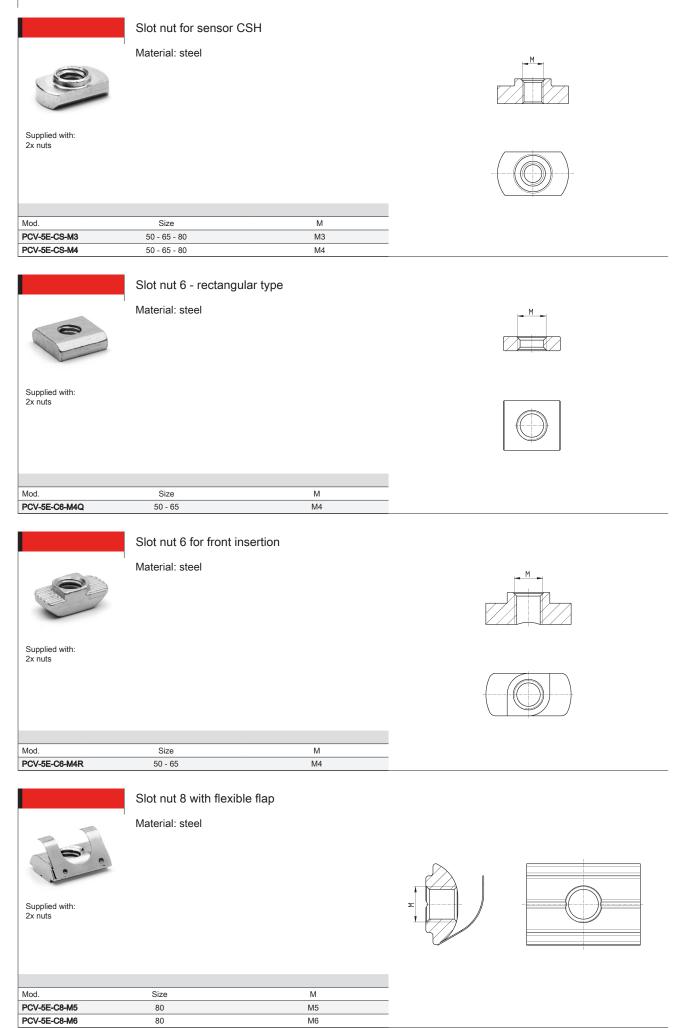

Kit to connect the gearbox - enhanced series

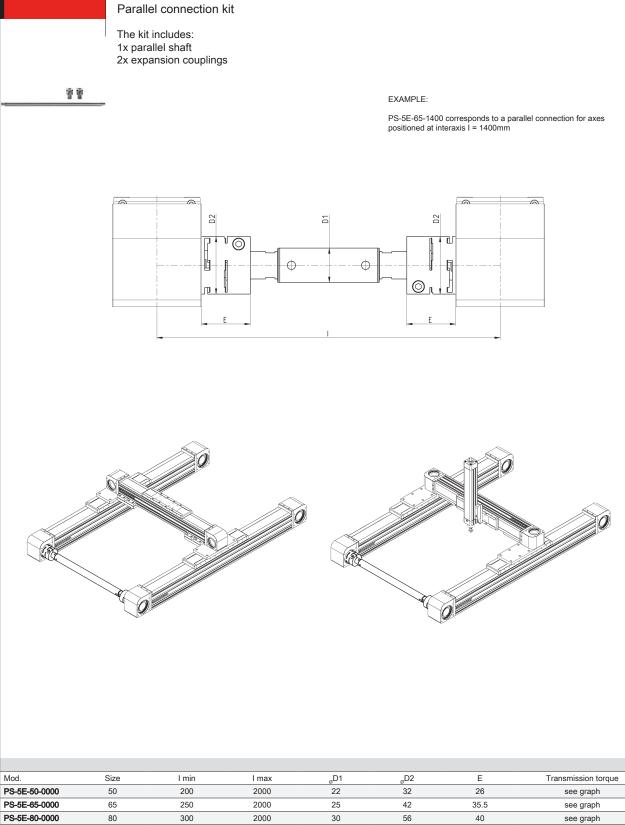
1




DIMENSIONS	DIMENSIONS										
Mod.	Size	_ø D1 [H7]	А	_ø D2	_ø D3	В	С	E	F	Weight (g)	
FRH-5E-50	50	40	4	52	5.5	8	51	50	34	170	
FRH-5E-65	65	60	4	70	6.5	10	59	65	47	530	

The kit includes: 1x NEMA 24 connection flange 4x screws + 4 lock washers 1x coupling Mod. COS 1x bushing (not present in FS-5E-50-0024)

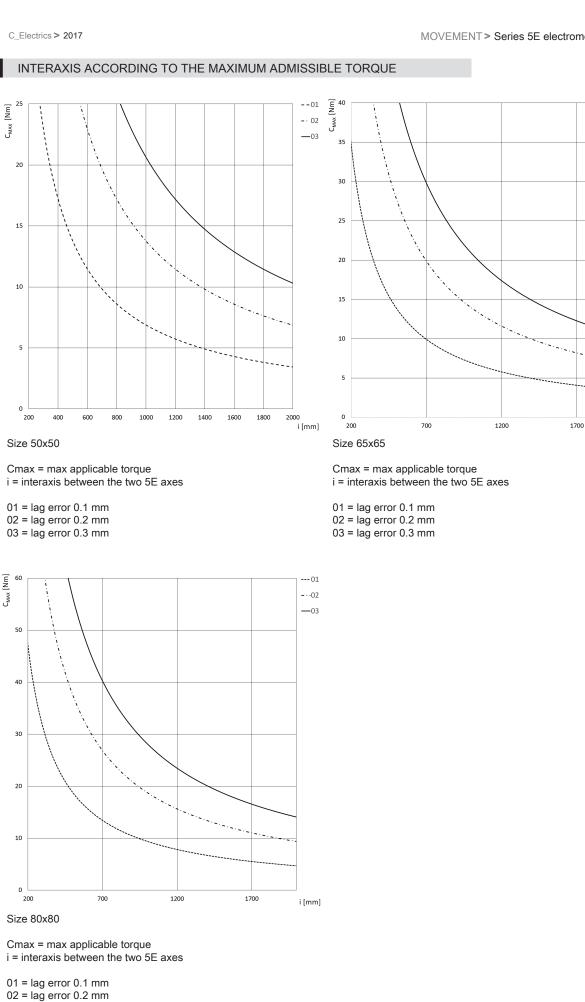

Direct connection kit for Stepper motor



Mod.	Size	Motor	А	В	_ø С	F1	F2	E	TG	К	м	Ν	Weight (g)
FS-5E-50-0024	50	NEMA 24	4	37	41	47	45	60.5	47.1	M4	38.1	2.5	125
FS-5E-65-0024	65	NEMA 24	4	36	45	65	60	60.5	47.1	M4	38.1	2.5	200

MOVEMENT

MOVEMENT


1

-01

- · 02

-03

i [mm]

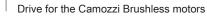
03 = lag error 0.3 mm

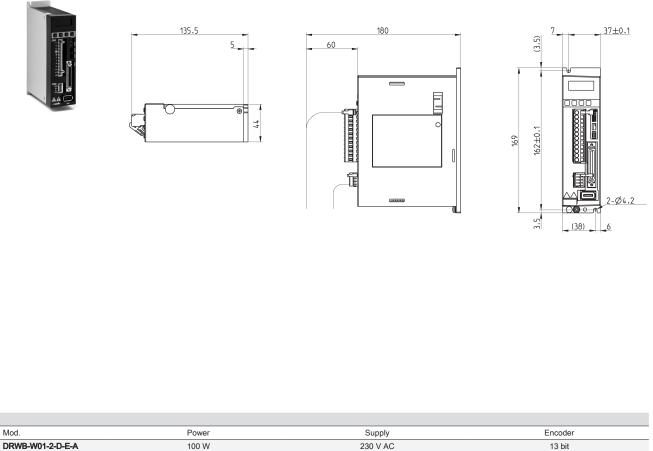
Series DRWB drives for the control of electric actuation

Drives for Brushless motors, sizes in power classes 100, 400 and 750 W

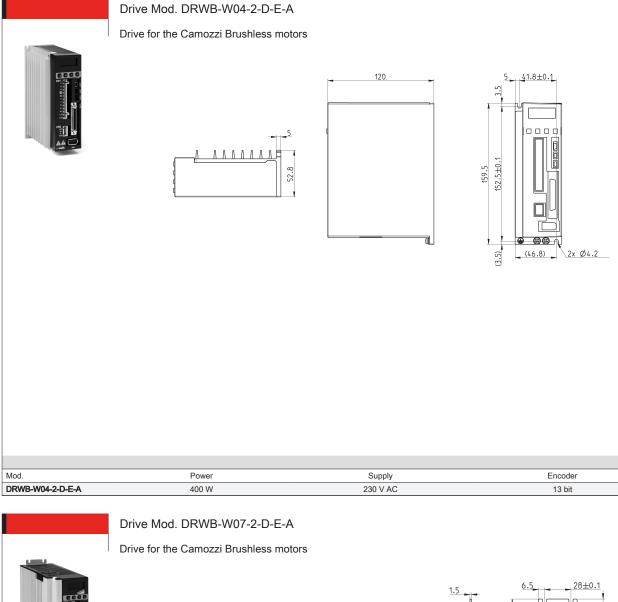
1

The Camozzi drives Series DRWB have been designed to control the movement of the Camozzi electromechanical actuators (Series 5E and Series 6E). The servo drives DRWB, compact and especially optimized for the brushless Camozzi motors, are completely digital and available in the power classes 100 W, 400 W and 750 W. Equipped with vector mode and the function of Autotuning and containment of vibrations, they are made in such a way to easily perform replacements and to have a two-line alphanumeric display with 4 control keys on the servo driver. A digital pulse interface allows control of the direction, position, speed and torque. It is possible to control the drives with analogic signals.


- » Completely digital drives
- » PLC function programmable with the Camozzi QSet configuration software
- » Control of speed, position and torque (torque only for Series DRWB)
- » 64 positions programmable through the QSet
- » Self-compensation of errors

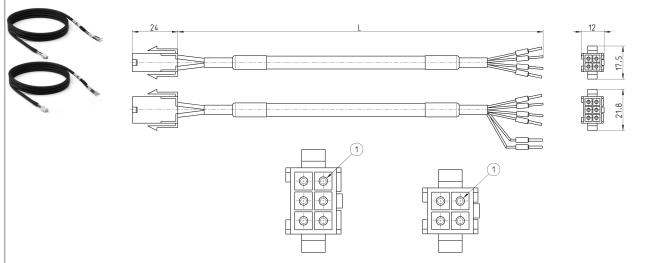

MOVEMENT

Power	100 W (Mod. DRWB-W01-2-D-E-A) 400 W (Mod. DRWB-W04-2-D-E-A) 750 W (Mod. DRWB-W07-2-D-E-A)	
Electrical supply	200 ÷ 240 V AC (± 10%) single or three phase 50 ÷ 60 Hz (± 5%)	
Number of phases	1	
Maximum current	1.5 A (Mod. DRWB-W01-2-D-E-A) 4.1 A (Mod. DRWB-W04-2-D-E-A) 7.5 A (Mod. DRWB-W07-2-D-E-A)	
Logic supply	200 ÷ 240 V AC (± 10 %) 50 ÷ 60 Hz (± 5 %) single phase	
Maximum logic current	0.5 A max.	
OUTPUT CURRENT		
Continuous current (effective)	0.9 A (Mod. DRWB-W01-2-D-E-A) 2.5 A (Mod. DRWB-W04-2-D-E-A) 5.1 A (Mod. DRWB-W07-2-D-E-A)	
Peak current (effective)	2.7 A (Mod. DRWB-W01-2-D-E-A) 7.5 A (Mod. DRWB-W04-2-D-E-A) 15.3 A (Mod. DRWB-W07-2-D-E-A)	
Maximum duration of peak current	1 second	
Type of control	IGBT PWM vector control	
Controller sampling rate	Current, speed and position: 15 kHz	
Motor types supported	AC servo motors	
Status of LED	Red: Error Green: Ready	
OPERATING MODES		
Encoder interface	Operating voltage + 5 VDC ± 5 % @400 mA	
Communication interface	USB 2.0	
Parameterisable I/O interface	Digital Inputs [I1I9], (single-end, optocoupler) Digital Outputs [O1O4], (optocoupler) BRAKE Output [CN2_BRK], max. 1 A DC	
Feedback	External transducer Activation threshold + HV> 370 V DC Activation threshold + HV< 360 V DC Tolerance ± 5 %	
Monitoring functions	Short circuit, overvoltage (> 390 V DC ± 5 %), undervoltage (< 60 V DC); position error, encoder error, motor phase monitoring, overtemperature D2 (IGBT > 90 °C ± 1°C), motor overtemperature	
Autotuning	with automatic mass inertia calculation	
VSF (vibration suppression)	01 Hz + 200 Hz	
Other functions	Friction compensation, gear play compensation	
Ambient conditions	Operating temperature 0°C + 40°C (above 55 °C only with air conditioning)	
	Storage temperature -20°C + 65°C	
	UAir humidity 20% + 85% (non-condensing)	
	Operating altitude < 1000 m above sea level Vibration 5.88 m/s (10 Hz + 60 Hz)	
	Protection class IP20	

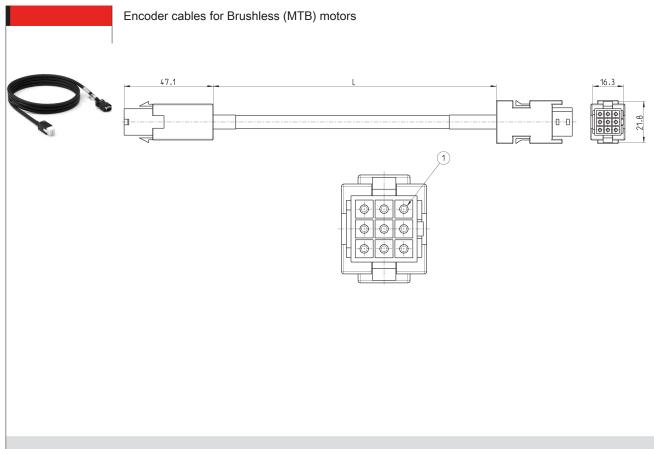

DRWB	- W01 - 2 - D - E - A
DRWB	SERIES
W01	SIZE W: W01 = 100 W W04 = 400 W W07 = 750 W
2	SUPPLY: 2 = 220 V AC
D	COMMUNICATION: D = Digital I/O and Analog
E	FEEDBACK: E = incremental encoder 13 bit
Α	VERSIONS: A = Standard

Drive Mod. DRWB-W01-2-D-E-A

MOVEMENT


Mod.	Power	Supply	Encoder
DRWB-W04-2-D-E-A	400 W	230 V AC	13 bit

99 579	1.5 0 0 167.3	6.5 28±0.1 5;50 5;50 47 4x Ø4.4
Drive for the Camozzi Brushless motors	5	


Encoder Supply Powe DRWB-W07-2-D-E-A 750 W 230 V AC 13 bit

Cables for and Brushless (MTB) motors

Mod.	Brake	Pins	L = cable (m)
EC-200421-B300	-	4	3
EC-200421-B500	-	4	5
EC-200421-BA00	-	4	10
EC-210621-B300	*	6	3
EC-210621-B500	×	6	5
EC-210621-BA00	*	6	10

Mod.	Pins	L = cable (m)
EC-220923-B300	9	3
EC-220923-B500	9	5
EC-220923-BA00	9	10

MOVEMENT

	USB t	o Mini USB ca	ble Mod. G11	W-G13W-2	
9		hardware confi Camozzi produc			
Mod.	description	connections	material for outer sheath	cable length "L" (m))
G11W-G13W-2	black shielded cable 28 AWG	standard USB to Mini USB	PVC	2	

New

Serie DRCS drives for Stepper motors

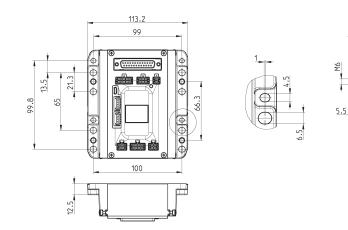
One-size full digital drives with bluetooth system and NFC integrated

The Series DRCS drives, compact and optimized in one size, have been specially configured for all small and medium-sized Camozzi Stepper motors. They are capable of controlling Stepper motors with 2 phases and micro stepping feed. They are able to calculate the normal resonance frequency of the motors and optimize their driving. The use of the micro stepping technique (up to 1/128 of steps) enables the drive to almost replicate a sinusoidal current while considerably reducing the natural resonance of the motor itself. The availability of 8 inputs allows the realization of a table of 256 commands, for each of which it is possible to set position, speed, acceleration and deceleration.

Each command can be absolute or relative. Furthermore it is possible to control driving in frequency by using the Step and Direction commands. The frequency defines the speed, while the number of steps defines the position. The Series DRCS drives are equipped with the serial protocol CANopen CiA301 and CiA402 by means of which it is possible to run commands for motion control and the integration for the monitoring of the drive's state. To configure the drive, wired (USB 2.0) or wireless (according to Bluetooth standards; BL-BLE) connections can be used. Thanks to an innovative system that takes advantage of the NFC technology, it is possible to extract production and statistic data regarding the use of the drive, as these have now become essential parameters in order to approach the 4.0 industry.

- » Full digital drive
- » PLC function programmable with the Camozzi QSet configuration software
- » Feedback by means of incremental encoder
- » NFC system integrated
- » Self-compensation of errors
- » 256 programmable positions (control of speed and position)
- » Wire configuration by means of USB 2.0 and wireless configuration by means of bluetooth protocol BL-BLE
- » Can be controlled in frequency (step and direction), digital I/O and serial CANopen protocol

GENERAL DATA

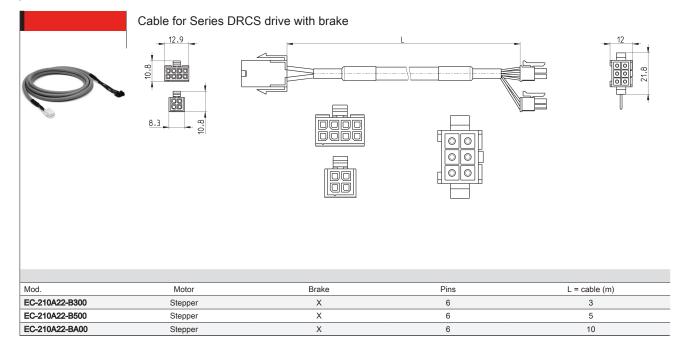

SUPPLY VOLTAGE	
Logic	18 ÷ 32 V DC
Power	24 ÷ 60 V DC
URRENT	
Current	0.1 ÷ 5 A
folding current	Automatic reduction of the holding current with motor in stop mode, this function can be set according to the holding current or its delay
AMBIENT	
Operating temperature	0 ÷ 40°C (up to 55°C with forced ventilation)
Storage temperature	-20°C ÷ 70°C
Humidity	0 ÷ 90%
Altitude	< 1000 meters
Vibration	1G (10 to 500 Hz)
Protection	Overvoltage, minimum voltage, overtemperature,
	short-circuit or grounding on the motor
Control method	4 state PWM 20kHz
Amplification type	Dual H-Bridge, 4 Quadrants
Position control encoder	100 to 5000 differential impulses / revolution
DIGITAL I/O	
nput control signal	12 opto-isolated 24 V DC
Dutput control signal	6 opto-isolated
nput impulse control	Step inlet and frequency direction maximum 10kHz
Dutput control signal	Electromechanical brake max current 1A
COMMUNICATION INTERFACE	
JSB	USB 2.0
Bluetooth	BL and standard BLE
RFID	with NFC devices
CANopen	standard
Microstep emulation	High resolution by means of microstepping and a detailed synchronization. Reduction of oscillations and of resonance vibrations
Anti-Resonance	Activation of the oscillation system in order to reduce vibrations and
	obtain a smooth movement, control of speed and a reduction of the time of oscillation
Led status	Green led: ready
Configuration	Digital with the Camozzi QSet configuration software
Control mothodo	Diaital inpute
Control methods	Digital inputs Frequency
	CANopen
MEMORY	
Data retention memory	Flash
Configuration data backup memory	E ² prom
Configuration data backup memory	
Weight	0.46 kg

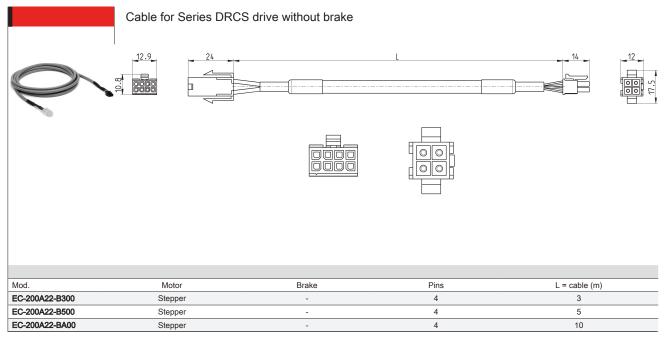
CODING EXAMPLE

DRCS	-	A05	-	8	-	D	-	0	-	Α
DRCS	SERIES									
A05	SIZE AT MAX A05 = 5 A	X CURRENT:								
8	SUPPLY: 8 = 48 V DC									
D	COMMUNICATION: D = Digital I/O and impulse frequency C = CANopen, Digital I/O and impulse frequency									
0	FEEDBACK: 0 = Feedback									
Α	VERSIONS: A = standard B = Bluetooth									

For the Camozzi Stepper motors

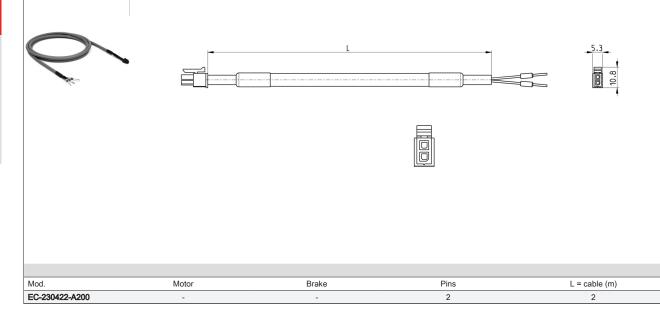
Mod.	Max current	Supply	Communication	Versions
DRCS-A05-8-D-0-A	5 A	48 V DC	Digital I/O and impulse frequency	standard
DRCS-A05-8-C-0-A	5 A	48 V DC	CANopen, Digital I/O and impulse frequency	Bluetooth BL-BLE
DRCS-A05-8-D-0-B	5 A	48 V DC	Digital I/O and impulse frequency	standard
DRCS-A05-8-C-0-B	5 A	48 V DC	CANopen, Digital I/O and impulse frequency	Bluetooth BL-BLE

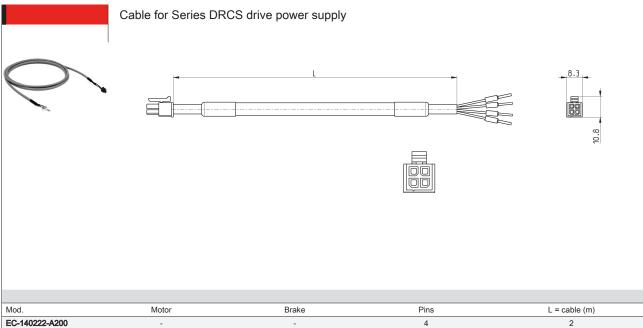

Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com.


5.5

39

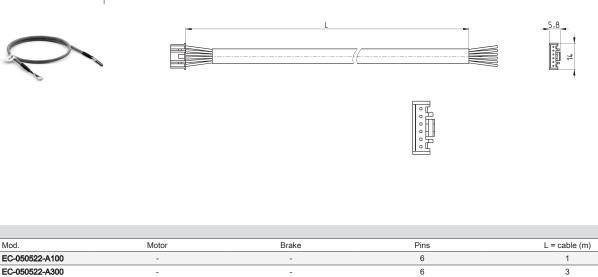
122.6




	Encoder cable for Series DRCS drive					
				8.8 500-1 500-1		
		100 100 100				
Mod.	Motor	Brake	Pins	L = cable (m)		
EC-220A22-B300	Stepper	-	8	3		
EC-220A22-B500	Stepper	-	8	5		
EC-220A22-BA00	Stepper	-	8	10		

1

MOVEMENT


Cable for Series DRCS drive logic supply

-	1	

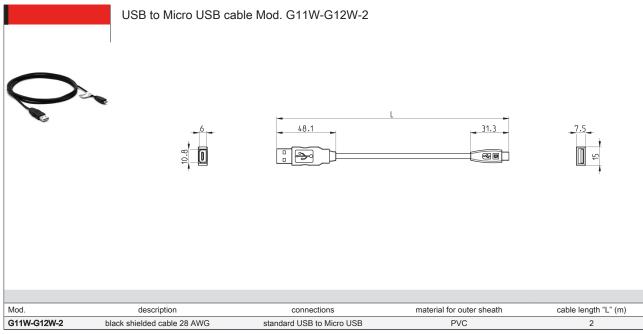
Cable for Series DRCS drive CANopen

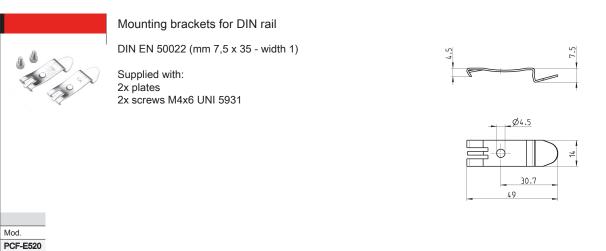
Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com.

5

6

EC-050522-A500


Mod.


Multipole cable 25P M

1

			L	15 0 5:55 0
Mod.	Motor	Brake	Pins	L = cable (m)
G2W-1	-	-	25	1
G2W-3		-	25	3

Series DRWS drives for the control of electric actuation

Drives for Stepper motors, one size/version

MOVEMENT

The Series DRWS Camozzi drives have been designed to control the movement of the Camozzi electromechanical actuators (Series 5E and Series 6E). The DRWS drives, compact and optimized in one size, have been especially studied for all Camozzi Stepper motors. They are capable of controlling Stepper motors with 2 phases and micro stepping feed. They are able to calculate the normal resonance frequency of the motors and optimize their driving. Moreover, they can reduce natural friction to a minimum during very slow rollings of the Stepper motor, giving a continuous and very fluid (smooth effect) movement at any speed thanks to the Microstepping technique, thus achieving a 1/64 STEP resolution.

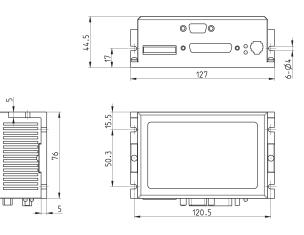
- » Completely digital drives
- » PLC function programmable with the Camozzi QSet configuration software
- » Control of speed, position and torque
- » 32 positions programmable through the QSet
- » Self-compensation of errors

Another function that has been integrated into the drives reduces vibrations to a minimum during rotation inversion or during sudden changes in speed. At initial ignition/ switching on, the DRWS drives are able to calculate the inductance, the electrical resistance of the motor connected and the inertia of the motor, and saves these parameters inside in order to better manage the driving of the motors.

GENERAL CHARACTERISTICS

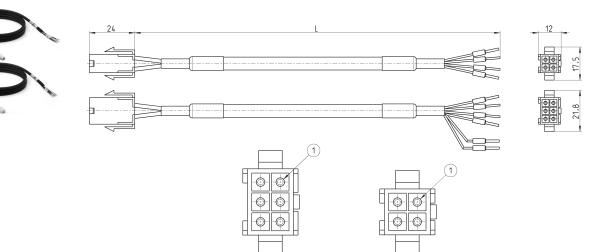
Mod. DRWS-A05-8-D-0-A

C_Electrics > 2017


Current	0.1 - 5 A			
Working voltage	24 - 48 V DC			
Amplifier type	Dual H-Bridge, 4 Quadrants			
Current control	4 state PWM at 20 KHz			
Protection	Overvoltage, undervoltage, overtemperature, internal motor shorts (phase-to-phase, phase-to-ground)			
Idle current	Automatic idle current reduction to reduce heat after motor stops moving, software selectable current and idle delay			
Microstep emulation	Performs high resolution stepping by synthesizing fine microsteps from coarse steps. Reduces jerk and extraneous system resonances.			
Anti-resonance	Raises the system damping ratio to eliminate midrange instability and allow stable operation throughout the speed range and improves settling time.			
Torque ripple smoothing	Allows for fine adjustment of phase current waveform harmonic content to reduce low-speed torque ripple in the range of 0.25 to 1.5 rps			
Non-volatile storage	Configurations are saved in FLASH memory on-board the DSP			
Humidity	90% non-condensing			
Ambient temperature	0 - 40°C			
Mass	Approx. 0.2 Kg			
I/O specifications	 8 Inputs: optically isolated, 24 V DC Outputs: optically isolated, 24 V DC max, 10 mA max 1 Output brake: optically isolated Analog Input: 0-5 V DC, 12 bit resolution (4096 points) 			

CODING E	XAMPLE
DRWS	- A05 - 8 - D - 0 - A
DRWS	SERIES
A05	MAX SIZE A: A05 = 5 A
8	SUPPLY: 8 = 24V - 48V DC
D	COMMUNICATION: D = Digital I/O and Analog
0	FEEDBACK: 0 = no Feedback
Α	VERSIONS: A = Standard

Drive Mod. DRWS-A05-8-D-0-A


Drive for the Camozzi Stepper motors

Mod.	max current	Supply
DRWS-A05-8-D-0-A	5 A	48 V DC

Cables for Stepper (MTS) motors

Mod.	Brake	Pins	L = cable (m)
EC-200422-B100	-	4	1
EC-200422-B300	-	4	3
EC-200422-B500	-	4	5
EC-200422-BA00	-	4	10
EC-200622-B300	×	6	3
EC-200622-B500	×	6	5
EC-200622-BA00	×	6	10

Series MTB motors

for electric actuation

MOVEMENT

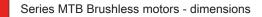
Brushless motors in power classes 100, 400 and 750 W

» Low inertia motors

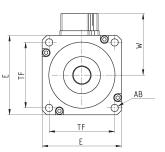
- » Available with or without brake
- » With incremental 13 bit encoder
- » Different sizes or power classes available

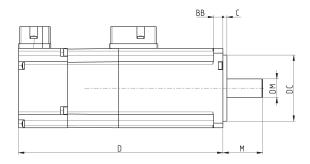
The standard motors are equipped with a 13 bit encoder with 10,000 increments per cycle and are offered with or without a motor brake. Due to the high dynamics of these motors, it is possible to guarantee a constant torque at any speed. Due to the low mass inertia, they are particularly suitable for high work dynamics, like sudden changes in direction or high moving frequencies.

The Camozzi motors Series MTB have been designed to be connected in an easy and practical way to the new product range within electrical actuation, being able to drive both electromechanical cylinders and axes.


The Series MTB of synchronous AC Brushless motors is available with a power of 100, 400 and 750 W.

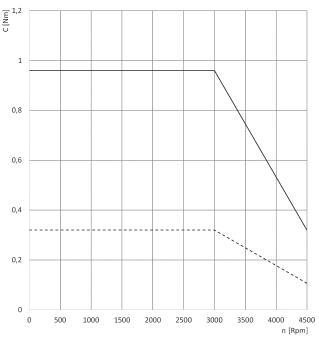
GENERAL DATA


Power	100 W (Mod. MTB-010) - 400 W (Mod. MTB-040) - 750 W (Mod. MTB-075)
Type of motor	permanently excited synchronous servo motor
Magnet	Neodymium, iron and boron (NdFeB)
Housing	Aluminium
Colour	black
Protection class: motor on the shaft connector	IP65 IP40 IP20
Insulation class	class A
Shaft end	no machining
Nominal torque	0.32 Nm (100 W) - 1.27 Nm (400 W) - 2.4 Nm (750 W)
Peak torque	3 × nominal torque
Braking torque (only for motors with brake)	0.32 Nm (100 W) - 1.27 Nm (400 W) - 2.4 Nm (750 W)
Service life	> 20.000 h (at nominal load)
Motor connection Encoder connection	cable (300 mm) available out of the motor cable (300 mm) available out of the encoder
Cooling	with an integrated radiator
Thermal monitoring	not available
Encoder	incremental 13-bit TTL encoder, 10 000 pulses/revolution
Ambient temperature Storage temperature	0°C + 40°C –15°C + 70°C
Air humidity	up to 80 % of relative air humidity
Max. installation height	at below 1.000 m above sea level


CODING EXAMPLE

MTB	-	010	-	2	-	0	-	E
MTB	SERIES							
010	POWER: 010 = 100 W 040 = 400 W 075 = 750 W							
2	SUPPLY: 2 = 220 V DC							
0	BRAKE: 0 = without brake F = with brake							
Ε	ENCODER: E = incremental 13	3 bit						


Supplied with: 1 motor 4 screws



Mod.	Power	D	E	W	_ø DM [h6]	Μ	_ø DC	С	TF	_ø AB	BB	Weight (Kg)
MTB-010-2-0-E	100 W	110.5	42	32	8	25	30 f7	2.5	31.8	3.4	12	0.63
MTB-010-2-F-E	100 W	139	42	32	8	25	30 f7	2.5	31.8	3.4	12	0.76
MTB-040-2-0-E	400 W	121.5	60	46.5	14	30	50 h7	3	49.5	5.5	7.5	1.31
MTB-040-2-F-E	400 W	159	60	46.5	14	30	50 h7	3	49.5	5.5	7.5	1.86
MTB-075-2-0-E	750 W	140	80	56.5	19	40	70 f6	3	63.6	6.6	9	2.66
MTB-075-2-F-E	750 W	176	80	56.5	19	40	70 f6	3	63.6	6.6	9	3.32

Torque-speed curves

4500

3,5 3 2,5 2 1,5 1 0.5 0 500 1000 1500 2000 2500 3000 3500 4000 0 n [Rpm]

MTB-010..

C = torque

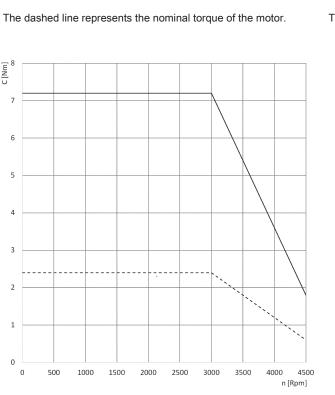
8 C [Nm]

7

6

5

4


3

2

1

n = number of revolutions per minute

The continuous line represents the peak torque of the motor.

MTB-060..

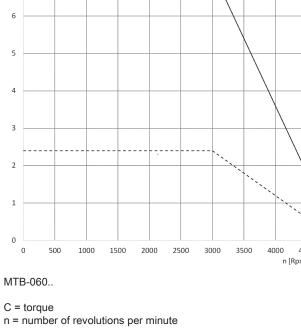
C = torque

The continuous line represents the peak torque of the motor.

The dashed line represents the nominal torque of the motor.

C = torque

MTB-040..


C [Nm] 4.5

4

n = number of revolutions per minute

The continuous line represents the peak torque of the motor.

The dashed line represents the nominal torque of the motor.

Series MTS motors for electric actuation

Stepper motors with Nema 23 or 24 fixing flange

1

- » Low inertia motors
- » Different sizes or power classes available
- » Version with incremental encoder
- » Version with incremental encoder and brake

The new Camozzi motors Series MTS have been designed to be connected in an easy and practical way to the new product range within electrical actuation, being able to drive both electromechanical cylinders and axes. The new Series MTS electrical Stepper motors are available in the sizes Nema 23 and Nema 24.

Each motor version comes with its own driving version that is interfaceable with the QSet configuration software, especially developed by Camozzi in order to simplify the setting up of the electric actuator.

GENERAL DATA

	Models: MTS-23-18-060-0-0-S-C MTS-23-18-060-0-E-C MTS-23-18-060-0-F-E-C	Models: MTS-24-18-250-0-0-S-C MTS-24-18-250-0-0-E-C MTS-24-18-250-0-F-E-C
Shaft	single	single
Leads	4	4
Length	41 mm	85 mm
Holding torque	0.6 Nm	2.5 Nm
Current per phase	4.5 A/Phase	4.5 A/Phase
Resistance	0.48 Ω/Phase	0.65 Ω/Phase
Motor inertia	135 g·cm²	900 g·cm²
Dielectric strength	500 V AC/min	500 V AC/min
1		

MTS

MTS

23

CODING EXAMPLE

-

SERIES

23

MOTOR SIZE FLANGE CONNECTION: 23 = Nema 23 24 = Nema 24

-

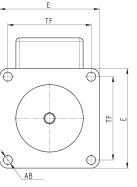
-

С

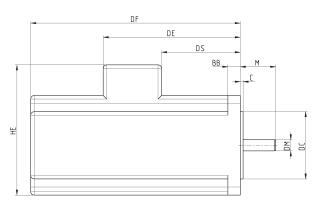
S

-

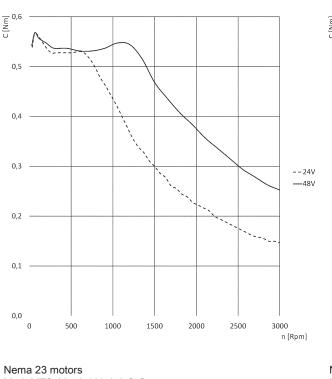
1

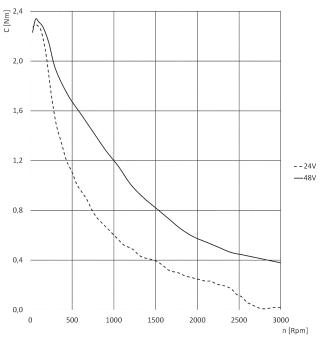

	ESOLUTION IN DEGREES PER REVOLUTION: 8 = 1.8° per step ORQUE:
	ORQUE:
25	00 = 0.6 Nm with Nema 23 only 50 = 2.5 Nm with Nema 24 only
	LECTRICAL CONNECTION: = connector
U 0:	RAKE: = without brake = with brake
3 s	NCODER VARIANTS: = single shaft without encoder = single shaft with encoder
	IECHANICAL SHAFT VARIANTS: = cylindrical shaft

18 -


060 - 0 -

0


Series MTS Stepper motors - dimensions



Mod.	Brake	Encoder	Nema	DS	DE	DF	HE	Е	L	_ø DM [h7]	Μ	_ø DC [js10]	С	TF	_ø AB	BB	Weight (Kg)
MTS-23-18-060-0-0-S-C	-	-	23	41	-	-	-	56.4	300 ± 10	6.35	20.6	38.1	1.6	47.14	5.1	5	0.42
MTS-23-18-060-0-0-E-C	-	×	23	31.5	64.5	-	73.6	56.4	200 ± 50	6.35	20.6	38.1	1.6	47.14	5.1	7	0.42
MTS-23-18-060-0-F-E-C	×	×	23	31.5	64.5	105.5	73.6	56.4	200 ± 50	6.35	20.6	38.1	1.6	47.14	5.1	7	0.62
MTS-24-18-250-0-0-S-C	-	-	24	85	-	-	-	60	300 ± 10	8	20.6	38.1	1.5	47.14	4.5	7	1.41
MTS-24-18-250-0-0-E-C	-	×	24	78	111	-	77.4	60	200 ± 50	8	20.6	38.1	1.5	47.14	4.5	8	1.41
MTS-24-18-250-0-F-E-C	×	×	24	78	111	152	77.4	60	200 ± 50	8	20.6	38.1	1.5	47.14	4.5	8	1.62

Torque-speed curves

Mod. MTS-23-18-060-0-0-S-C Mod. MTS-23-18-060-0-0-E-C Mod. MTS-23-18-060-0-F-E-C

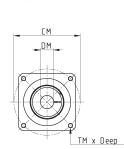
C = torque n = revolutions per minute Nema 24 motors Mod. MTS-24-18-250-0-0-S-C Mod. MTS-24-18-250-0-0-E-C Mod. MTS-24-18-250-0-F-E-C

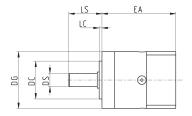
C = torque n = revolutions per minute

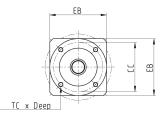
Series GB

planetary gearboxes

Available sizes: 40, 60 and 80

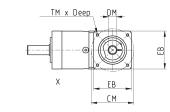

The Series GB planetary gearboxes, by means of a planetary gear system, enable the reduction of the angular speed and the increase of transmittable torque. These gearboxes can be used with the Series 5E electromechanical axes. Available in 3 sizes with 4 different reduction ratios, the Series GB planetary gearboxes can be supplied in two different configurations, in-line or orthogonal.

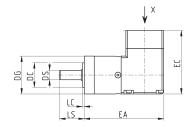

All gearboxes are equipped with interface flanges for the connection to the Camozzi Series MTB and Series MTS motors.

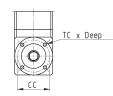

- » Reduced play
- » Prepared to be connected with Series MTB and Series MTS motors
- » High performance
- » 4 Reduction ratios available (i=3,5,7,10)
- » Silent operation
- » Any mounting position
- » Lifetime lubrication
- » Available in in-line and orthogonal configurations

CODING EXAMPLE

GB	-	040	-	03	3 –	D	-	0100
GB	GEARBOX							
040	SIZE: 040 = Ø40 060 = Ø60 080 = Ø80							
03	REDUCTION F 03 i = 3 05 i = 5 07 i = 7 10 i = 10	RATIO:						
D	TYPE: D = straight A = angular							
0100	0100 = Brushle 0400 = Brushle	N OF THE MOTOR: ess 100W (size 040 ess 400W (size 060 ess 750W (size 080 24	only) only)					
			oniy)					



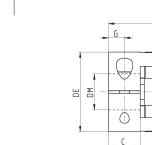



Mod.	BACKLASH	_ø DS [h7]	LS	_ø DC [h7]	LC	_ø CC	TC x Deep	EA	EB	_ø DG	_ø DM	_ø CM	TM x Deep	Weight (Kg)
GB-040-03-D-0100	<15'	10	26	26	2	34	M4 x 6	67.5	40	40	8	45	M3 x 8	0.35
GB-040-05-D-0100	<15'	10	26	26	2	34	M4 x 6	67.5	40	40	8	45	M3 x 8	0.35
GB-040-07-D-0100	<15'	10	26	26	2	34	M4 x 6	67.5	40	40	8	45	M3 x 8	0.35
GB-040-10-D-0100	<15'	10	26	26	2	34	M4 x 6	67.5	40	40	8	45	M3 x 8	0.35
GB-040-03-D-0024	<15'	10	26	26	2	34	M4 x 6	63.5	60	40	8	66.7	M4 x 10	0.35
GB-040-05-D-0024	<15'	10	26	26	2	34	M4 x 6	63.5	60	40	8	66.7	M4 x 10	0.35
GB-040-07-D-0024	<15'	10	26	26	2	34	M4 x 6	63.5	60	40	8	66.7	M4 x 10	0.5
GB-040-10-D-0024	<15'	10	26	26	2	34	M4 x 6	63.5	60	40	8	66.7	M4 x 10	0.5
GB-060-03-D-0400	<10'	14	35	40	3	52	M5 x 8	78	60	60	14	70	M5 x 12	0.9
GB-060-05-D-0400	<10'	14	35	40	3	52	M5 x 8	78	60	60	14	70	M5 x 12	0.9
GB-060-07-D-0400	<10'	14	35	40	3	52	M5 x 8	78	60	60	14	70	M5 x 12	0.9
GB-060-10-D-0400	<10'	14	35	40	3	52	M5 x 8	78	60	60	14	70	M5 x 12	0.9
GB-060-03-D-0024	<10'	14	35	40	3	52	M5 x 8	71	60	60	8	66.7	M4 x 10	0.9
GB-060-05-D-0024	<10'	14	35	40	3	52	M5 x 8	71	60	60	8	66.7	M4 x 10	0.9
GB-060-07-D-0024	<10'	14	35	40	3	52	M5 x 8	71	60	60	8	66.7	M4 x 10	0.9
GB-060-10-D-0024	<10'	14	35	40	3	52	M5 x 8	71	60	60	8	66.7	M4 x 10	0.9
GB-080-03-D-0750	<7'	20	40	60	3	70	M6 x 10	103.5	80	80	19	90	M6 x 15	2.1
GB-080-05-D-0750	<7'	20	40	60	3	70	M6 x 10	103.5	80	80	19	90	M6 x 15	2.1
GB-080-07-D-0750	<7'	20	40	60	3	70	M6 x 10	103.5	80	80	19	90	M6 x 15	2.1
GB-080-10-D-0750	<7'	20	40	60	3	70	M6 x 10	103.5	80	80	19	90	M6 x 15	2.1
GB-080-03-D-0024	<7'	20	40	60	3	70	M6 x 10	93.5	80	80	8	66.7	M4 x 10	2.1
GB-080-05-D-0024	<7'	20	40	60	3	70	M6 x 10	93.5	80	80	8	66.7	M4 x 10	2.1
GB-080-07-D-0024	<7'	20	40	60	3	70	M6 x 10	93.5	80	80	8	66.7	M4 x 10	2.1
GB-080-10-D-0024	<7'	20	40	60	3	70	M6 x 10	93.5	80	80	8	66.7	M4 x 10	2.1

IN-LINE PLANETARY GEARBOX

Mod.	BACKLASH	_ø DS [h7]	LS	_ø DC [h7]	LC	_ø CC	TC x Deep	EA	EB	EC	_ø DG	_ø DM	_ø CM	TM x Deep	Weight (Kg)
GB-040-03-A-0100	<21'	10	26	26	2	34	M4 x 6	84	40	67	40	8	45	M3 x 7	0.51
GB-040-05-A-0100	<21'	10	26	26	2	34	M4 x 6	84	40	67	40	8	45	M3 x 7	0.51
GB-040-07-A-0100	<21'	10	26	26	2	34	M4 x 6	84	40	67	40	8	45	M3 x 7	0.51
GB-040-10-A-0100	<21'	10	26	26	2	34	M4 x 6	84	40	67	40	8	45	M3 x 7	0.51
GB-040-03-A-0024	<21'	10	26	26	2	34	M4 x 6	84	60	63	40	8	66.7	M4 x 7	0.51
GB-040-05-A-0024	<21'	10	26	26	2	34	M4 x 6	84	60	63	40	8	66.7	M4 x 7	0.51
GB-040-07-A-0024	<21'	10	26	26	2	34	M4 x 6	84	60	63	40	8	66.7	M4 x 7	0.51
GB-040-10-A-0024	<21'	10	26	26	2	34	M4 x 6	84	60	63	40	8	66.7	M4 x 7	0.51
GB-060-03-A-0400	<16'	14	35	40	3	52	M5 x 8	112	60	92.5	60	14	70	M5 x 12	1.7
GB-060-05-A-0400	<16'	14	35	40	3	52	M5 x 8	112	60	92.5	60	14	70	M5 x 12	1.7
GB-060-07-A-0400	<16'	14	35	40	3	52	M5 x 8	112	60	92.5	60	14	70	M5 x 12	1.7
GB-060-10-A-0400	<16'	14	35	40	3	52	M5 x 8	112	60	92.5	60	14	70	M5 x 12	1.7
GB-060-03-A-0024	<16'	14	35	40	3	52	M5 x 8	71	60	85.5	60	8	66.7	M4 x 10	1.7
GB-060-05-A-0024	<16'	14	35	40	3	52	M5 x 8	71	60	85.5	60	8	66.7	M4 x 10	1.7
GB-060-07-A-0024	<16'	14	35	40	3	52	M5 x 8	71	60	85.5	60	8	66.7	M4 x 10	1.7
GB-060-10-A-0024	<16'	14	35	40	3	52	M5 x 8	71	60	85.5	60	8	66.7	M4 x 10	1.7
GB-080-03-A-0750	<13'	20	40	60	3	70	M6 x 10	144	80	119.5	80	19	90	M6 x 15	4.4
GB-080-05-A-0750	<13'	20	40	60	3	70	M6 x 10	144	80	119.5	80	19	90	M6 x 15	4.4
GB-080-07-A-0750	<13'	20	40	60	3	70	M6 x 10	144	80	119.5	80	19	90	M6 x 15	4.4
GB-080-10-A-0750	<13'	20	40	60	3	70	M6 x 10	144	80	119.5	80	19	90	M6 x 15	4.4
GB-080-03-A-0024	<13'	20	40	60	3	70	M6 x 10	144	80	109.5	80	8	66.7	M4 x 10	4.4
GB-080-05-A-0024	<13'	20	40	60	3	70	M6 x 10	144	80	109.5	80	8	66.7	M4 x 10	4.4
GB-080-07-A-0024	<13'	20	40	60	3	70	M6 x 10	144	80	109.5	80	8	66.7	M4 x 10	4.4
GB-080-10-A-0024	<13'	20	40	60	3	70	M6 x 10	144	80	109.5	80	8	66.7	M4 x 10	4.4

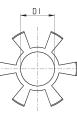
Series CO motion transmission devices


Mod. COE: elastomer coupling with clamps

- Mod. COS: elastomer coupling with expansion shaft
- Mod. COT: self-centering locking-set

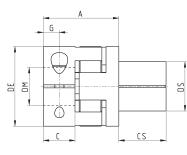


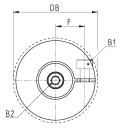
The motion transmission devices are necessary for a proper connection of electromechanical axes and cylinders with motors or gearboxes. Mod. COE couplings are composed of two hubs with a high concentricity clamp and an elastomeric element. Mod. COS couplings are composed of one hub with a high concentricity clamp, a hub with expansion shaft and an elastomeric element.

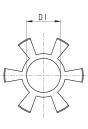

The torque transmission is performed without angular play or vibrations. Both couplings are without angular play thanks to the pretensioning of the elastomer between the two semicouplings. Mod. COT locking-sets are composed by an internal and an external conical ring connected with eachother by means of several screws. Through the tightening of the screws, an axial force is generated that enables the torque transmission from the shaft to the hub.

Elastomer coupling with clamps Mod. COE

B1

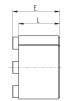


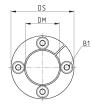

COE-05-0800-0635-A 8 6.35 25 10.2 26 8 8 4 M3 (CH2.5) 2 9 20 COE-05-0800-0635-A 8 8 25 25 10.2 26 8 8 4 M3 (CH2.5) 2 9 20 COE-05-0800-0600-A 8 8 25 25 10.2 26 8 8 4 M3 (CH2.5) 2 9 20 COE-10-1000-0635-A 10 6.35 32 32 14.2 32 10.3 10.5 5 M4 (CH2.5) 4 12.5 50 COE-10-1000-0605-A 12 8 32 32 14.2 32 10.3 10.5 4 M4 (CH2.5) 4 12.5 50 COE-10-1000-1400-A 10 14 32 32 10.3 10.5 5 M4 (CH3) 4 12.5 20 COE-10-1200-1400-A 12 14 32 32 10.3 10.5														
COE-05-0800-0800-A 8 8 25 25 10.2 26 8 8 4 M3 (CH2.5) 2 9 20 COE-10-1000-0635-A 10 6.35 32 32 14.2 32 10.3 10.5 5 M4 (CH2.5) 4 12.5 50 COE-10-1000-0635-A 10 6.35 32 32 14.2 32 10.3 10.5 5 M4 (CH2.5) 4 12.5 50 COE-10-1000-1400-A 10 14 32 32 10.3 10.5 5 M4 (CH3) 4 12.5 20 COE-10-1200-1400-A 10 14 32 32 10.3 10.5 5 M4 (CH3) 4 12.5 20 COE-10-1200-1400-A 12 14 32 32 10.3 10.5 5 M4 (CH3) 4 12.5 50	Mod.	_ø DC [H7]	_ø DM [H7]	_ø DE	_ø DB	_ø DI	Α	С	F	G	B1 [ISO4762]	Torque force (Nm)	Nominal torque (Nm)	Weight (g)
COE-10-1000-0635-A 10 6.35 32 32 14.2 32 10.3 10.5 5 M4 (CH2.5) 4 12.5 50 COE-10-1200-0800-A 12 8 32 32 14.2 32 10.3 10.5 4 M4 (CH2.5) 4 12.5 50 COE-10-1000-1400-A 10 14 32 32 14.2 32 10.3 10.5 5 M4 (CH3.5) 4 12.5 50 COE-10-1000-1400-A 10 14 32 32 14.2 32 10.3 10.5 5 M4 (CH3.5) 4 12.5 20 COE-10-1200-1400-A 12 14 32 32 10.3 10.5 5 M4 (CH3.5) 4 12.5 50	COE-05-0800-0635-A	8	6.35	25	25	10.2	26	8	8	4	M3 (CH2.5)	2	9	20
COE-10-1200-0800-A 12 8 32 32 14.2 32 10.3 10.5 4 M4 (CH2.5) 4 12.5 50 COE-10-1000-1400-A 10 14 32 32 14.2 32 10.3 10.5 5 M4 (CH3.5) 4 12.5 50 COE-10-1200-1400-A 10 14 32 32 14.2 32 10.3 10.5 5 M4 (CH3.5) 4 12.5 20 COE-10-1200-1400-A 12 14 32 32 10.3 10.5 5 M4 (CH3.5) 4 12.5 50	COE-05-0800-0800-A	8	8	25	25	10.2	26	8	8	4	M3 (CH2.5)	2	9	20
COE-10-1000-1400-A 10 14 32 32 14.2 32 10.5 5 M4 (CH3) 4 12.5 20 COE-10-1200-1400-A 12 14 32 32 14.2 32 10.3 10.5 5 M4 (CH3) 4 12.5 20	COE-10-1000-0635-A	10	6.35	32	32	14.2	32	10.3	10.5	5	M4 (CH2.5)	4	12.5	50
COE-10-1200-1400-A 12 14 32 32 14.2 32 10.3 10.5 5 M4 (CH3) 4 12.5 50	COE-10-1200-0800-A	12	8	32	32	14.2	32	10.3	10.5	4	M4 (CH2.5)	4	12.5	50
	COE-10-1000-1400-A	10	14	32	32	14.2	32	10.3	10.5	5	M4 (CH3)	4	12.5	20
COF-10-1500-0800-A 15 8 32 32 142 32 10.3 10.5 5 M4 (CH3) 4 12.5 50	COE-10-1200-1400-A	12	14	32	32	14.2	32	10.3	10.5	5	M4 (CH3)	4	12.5	50
	COE-10-1500-0800-A	15	8	32	32	14.2	32	10.3	10.5	5	M4 (CH3)	4	12.5	50
COE-20-1500-1900-A 15 19 42 44.5 19.2 50 17 15.5 8.5 M5 (CH4) 8 17 120	COE-20-1500-1900-A	15	19	42	44.5	19.2	50	17	15.5	8.5	M5 (CH4)	8	17	120



Elastomer coupling with expansion shaft Mod. COS

С





Mod.	_ø DS [h7]	_ø DM [H7] _g	_و DE و	₀DB	_ø DI A	A C	; CS	S F	G	B1 [ISO4762]	Torque force (Nm)	B2 [ISO4762]	Torque force (Nm)	Nominal torque (Nm) Weight (g)
COS-10-2000-1400-A	20	14	32	32	14.2 2	8 10	.3 20	10.5	5	M4 (CH3)	4	M5 (CH4)	9	12.5	50
COS-10-2000-0800-A	20	8	32	32	14.2 2	8 10	.3 20	10.5	5	M4 (CH3)	4	M5 (CH4)	9	12.5	50
COS-20-2600-2000-A	26	20	42 4	44.5	19.2 4	0 1	7 25	15.5	8.5	M5 (CH4)	8	M6 (CH5)	12	17	120
COS-60-3800-2500-A	38	25	56	57	26.2 4	6 20) 27	21	10	M6 (CH5)	15	M8 (CH6)	32	60	300

Self-centering locking-set Mod. COT

_ø DS	_ø DM	L	E	B1 [ISO4762]	Torque force (Nm)	Nominal torque (Nm)	Weight (g)
20	10	13	15.5	M2.5 (CH2.5)	1.2	19	25
26	14	17	20	M3 (CH2.5)	2.1	40	50
38	20	21	26	M5 (CH4)	4.9	165	140
	20 26	20 10 26 14	20 10 13 26 14 17	20 10 13 15.5 26 14 17 20	20 10 13 15.5 M2.5 (CH2.5) 26 14 17 20 M3 (CH2.5)	20 10 13 15.5 M2.5 (CH2.5) 1.2 26 14 17 20 M3 (CH2.5) 2.1	20 10 13 15.5 M2.5 (CH2.5) 1.2 19 26 14 17 20 M3 (CH2.5) 2.1 40

Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com.

	С_	Electrics	>	2017
--	----	-----------	---	------

NOTES

5
CAMOZZI

Products designed for industrial applications.
General terms and conditions for sale are available on www.camozzi.com.

The Camozzi worldwide network To respond and act guickly

To understand markets and the small but important differences between them, a company cannot only rely on the essential digital tools we all use every day, but it needs to be locally present, face to face, able to look into people's eyes and speak their language. This is why Camozzi now has an international network, based in Italy, but present on every continent.

PRESENCE ON EVERY CONTINENT

23 SUBSIDIARIES AND WORKSHOPS

52 EXCLUSIVE DISTRIBUTORS

6 PRODUCTION FACILITIES

1500 EMPLOYEES

Contacts

electrics@camozzi.com

For further information about our products and conditions of sale, contact Camozzi C_Electrics Division at:

Headquarters

Camozzi spa Società Unipersonale Via Eritrea, 20/I 25126 Brescia - Italy Tel. +39 030 37921

C_Electrics Division

Camozzi spa Società Unipersonale Via Borrine, 23/25 25080 Polpenazze d/G (BS) - Italy Tel. +39 0365 674046 Fax +39 0365 674306

Technical assistance

Catalogue product inquiries and requests for support: Tel. +39 030 3792790 service@camozzi.com Special product inquiries: Tel. +39 030 3792390 service@camozzi.com

Worldwide sales network

Camozzi Subsidiaries and Exclusive Distributors To check our sales network, visit the Camozzi website at Contacts / Camozzi Worldwide

A Camozzi Group Company
WWW.CAMOZZI.COM

